
Contents
HP E1419A Measurement and Control Module User’s Manual

Edition 1

Warranty . 9
Safety Symbols . 10
Declaration of Conformity . 11

Chapter 1. Getting Started . 13

About this Chapter . 13
 Configuring the HP E1419A . 13

Setting the Logical Address Switch . 14
Installing Signal Conditioning Plug-ons . 15
Disabling the Input Protect Feature (optional) . 19
Disabling Flash Memory Access (optional) . 19

Instrument Drivers . 21
About Example Programs . 21
Verifying a Successful Configuration . 21

Chapter 2. Field Wiring . 23

About This Chapter . 23
Planning Your Wiring Layout . 23

SCP Positions and Channel Numbers . 23
SCP Types and Signal Paths . 24
Pairing Sense and Source SCPs for Resistance Measurements 25
Planning for Thermocouple Measurements . 26

Faceplate Connector Pin-Signal Lists . 27
Optional Terminal Modules . 28

The SCPs and Terminal Module Connections . 28
Option 11 Terminal Module Layout . 29
Option 12 Terminal Module Layout . 30

Reference Temperature Sensing with the HP E1419A 31
Configuring the On-board/Remote Reference Jumpers 32
Preferred Measurement Connections . 34
Wiring and Attaching the Terminal Module . 41
Attaching/Removing the HP E1419 Terminal Module 43
Adding Components to the Option 12 Terminal Module 44
Option 11 Terminal Module Wiring Map . 45
Option 12 Terminal Module Wiring Map . 45
The Option A3F . 45

Chapter 3. Programming the HP E1419A MultifunctionPlus 47

About This Chapter . 47
Overview of the HP E1419 MultifunctionPlus . 48

MultifunctionPlus? . 48
Operating Model . 52
Executing The Programming Model . 53

Power-on and *RST Default Settings . 53

Contents 1

Setting up Analog Input and Output Channels . 57
Configuring Programmable Analog SCP Parameters 57

Setting Filter Cutoff Frequency . 58
Linking Channels to EU Conversion . 59
Linking Output Channels to Functions . 67

Setting up Digital Input and Output Channels . 67
Setting up Digital Inputs . 67
Setting up Digital Outputs . 68

Performing Channel Calibration (Important!) . 72
Defining C Language Algorithms . 74

Global variable definition . 74
Algorithm definition . 75
Pre-setting Algorithm Variables . 75

Defining Data Storage . 76
Specifying the Data Format . 76
Selecting the FIFO Mode . 77

Setting up the Trigger System . 78
Arm and Trigger Sources . 78
Programming the Trigger Timer . 80
Setting the Trigger Counter . 80
Outputting Trigger Signals . 81

INITiating/Running Algorithms . 81
Starting Algorithms . 81
The Operating Sequence . 82

Retrieving Algorithm Data . 83
Modifying Running Algorithm Variables . 86

Updating the Algorithm Variables and Coefficients 86
Enabling and Disabling Algorithms . 87
Setting Algorithm Execution Frequency . 88

Example Command Sequence . 88
Using the Status System . 90

Enabling Events to be Reported in the Status Byte 93
Reading the Status Byte . 94
Clearing the Enable Registers . 95
The Status Byte Group’s Enable Register . 95
Reading Status Groups Directly . 95

HP E1419A Background Operation . 96
Updating the Status System and VXIbus Interrupts . 97
Creating and Loading Custom EU Conversion Tables 98
Compensating for System Offsets . 100

Special Considerations . 102
Detecting Open Transducers . 103
More On Auto Ranging . 104
Settling Characteristics . 104

Background . 104
Checking for Problems . 105
Fixing the Problem . 105

Chapter 4. The Algorithm Language and Environment 109

About This Chapter . 109
Overview of the Algorithm Language . 110

Example Language Usage . 111

2 Contents

The Algorithm Execution Environment . 112
The Main Function . 112
How Your Algorithms Fit In . 112

Accessing the E1419A’s Resources . 113
Accessing I/O Channels . 114
Defining and Accessing Global Variables . 115
Determining First Execution (First_loop) . 115
Initializing Variables . 116
Sending Data to the CVT and FIFO . 116
Setting a VXIbus Interrupt . 117
Calling User Defined Functions . 118

Operating Sequence . 118
Overall Sequence . 118
Algorithm Execution Order . 120

Defining Algorithms (ALG:DEF) . 120
ALG:DEFINE in the Programming Sequence . 121
ALG:DEFINE’s Two Data Formats . 121
Changing an Algorithm While it’s Running . 122

A Very Simple First Algorithm . 124
Writing the Algorithm . 124
Running the Algorithm . 124

Non-Control Algorithms . 125
Data Acquisition Algorithm . 125
Process Monitoring Algorithm . 125

Algorithm Language Reference . 126
Standard Reserved Keywords . 126
Special HP E1419A Reserved Keywords . 126
Identifiers . 126
Special Identifiers for Channels . 127
Operators . 127
Intrinsic Functions and Statements . 128
Program Flow Control . 128
Data Types . 129
Data Structures . 130
Using Type Float in Integer Situations . 131

Language Syntax Summary . 133
Program Structure and Syntax . 138

Declaring Variables . 138
Assigning Values . 138
The Operations Symbols . 139
Conditional Execution . 139
Comment Lines . 141
Overall Program Structure . 142

Chapter 5. HP VEE Programming Examples . 143

About This Chapter . 143
Wiring Connections and File Locations for the Examples 147

Example File Location . 147
Installing Example Files . 147

Virtual Front Panel Program . 148
Calibration . 151
Function Test . 152

Contents 3

Programming Model Example . 153
Error Checking . 156
Configuration Display . 157
Engineering Unit Conversion . 158
Custom Function Generation . 160
Custom EU/Function Example . 162
Curve Fitting and EU Generation . 164
Interrupt Handling . 165
Simple Data Logger Example . 167
Modification of Variables and Arrays . 170
Algorithm Modification . 172
Driver Download . 174
Firmware-Update Download . 175

Chapter 6. HP E1419 Command Reference . 177

Using This Chapter . 177

 Overall Command Index . 177

Command Fundamentals . 182
Common Command Format . 182
SCPI Command Format . 182
Linking Commands . 185
C-SCPI Data Types . 187

SCPI Command Reference . 188
ABORt . 189
ALGorithm . 190

ALGorithm[:EXPLicit]:ARRay . 191
ALGorithm[:EXPLicit]:ARRay? . 192
ALGorithm[:EXPLicit]:DEFine . 192
ALGorithm[:EXPLicit]:SCALar . 196
ALGorithm[:EXPLicit]:SCALar? . 197
ALGorithm[:EXPLicit]:SCAN:RATio . 197
ALGorithm[:EXPLicit]:SCAN:RATio? . 198
ALGorithm[:EXPLicit]:SIZe? . 199
ALGorithm[:EXPLicit][:STATe] . 199
ALGorithm[:EXPLicit][:STATe]? . 200
ALGorithm[:EXPLicit]:TIME? . 201
ALGorithm:FUNCtion:DEFine . 201
ALGorithm:OUTPut:DELay . 203
ALGorithm:OUTPut:DELay? . 204
ALGorithm:UPDate[:IMMediate] . 204
ALGorithm:UPDate:CHANnel . 205
ALGorithm:UPDate:WINDow . 206
ALGOrithm:UPDate:WINDow? . 207

ARM . 208
ARM[:IMMediate] . 209
ARM:SOURce . 209
ARM:SOURce? . 210

CALibration . 211
CALibration:CONFigure:RESistance . 212
CALibration:CONFigure:VOLTage . 213
CALibration:SETup . 214

4 Contents

CALibration:SETup? . 214
CALibration:STORe . 215
CALibration:TARE . 216
CALibration:TARE:RESet . 218
CALibration:TARE? . 218
CALibration:VALue:RESistance . 219
CALibration:VALue:VOLTage . 219
CALibration:ZERO? . 220

DIAGnostic . 222
DIAGnostic:CALibration:SETup[:MODE] . 223
DIAGnostic:CALibration:SETup[:MODE]? . 223
 DIAGnostic:CALibration:TARE[:OTDetect]:MODE 224
DIAGnostic:CALibration:TARE[:OTDetect]:MODE? 224
DIAGnostic:CHECksum? . 225
DIAGnostic:CUSTom:LINear . 225
DIAGnostic:CUSTom:PIECewise . 226
DIAGnostic:CUSTom:REFerence:TEMPerature 226
DIAGnostic:IEEE . 227
DIAGnostic:IEEE? . 227
DIAGnostic:INTerrupt[:LINe] . 228
DIAGnostic:INTerrupt[:LINe]? . 228
DIAGnostic:OTDetect[:STATe] . 228
DIAGnostic:OTDetect[:STATe]? . 229
DIAGnostic:QUERy:SCPREAD? . 230
DIAGnostic:VERSion? . 230

FETCh? . 231
FORMat . 233

FORMat[:DATA] . 233
FORMat[:DATA]? . 234

INITiate . 236
INITiate[:IMMediate] . 236

INPut . 237
INPut:DEBounce:TIME . 237
INPut:FILTer[:LPASs]:FREQuency . 238
INPut:FILTer[:LPASs]:FREQuency? . 239
INPut:FILTer[:LPASs][:STATe] . 240
INPut:FILTer[:LPASs][:STATe]? . 240
INPut:GAIN . 241
INPut:GAIN? . 242
INPut:LOW . 242
INPut:LOW? . 243
INPut:POLarity . 243
INPut:POLarity? . 243
INPut:THReshold:LEVel? . 244

MEMory . 245
MEMory:VME:ADDRess . 246
MEMory:VME:ADDRess? . 246
MEMory:VME:SIZE . 246
MEMory:VME:SIZE? . 247
MEMory:VME:STATe . 247
MEMory:VME:STATe? . 248

OUTPut . 249

Contents 5

OUTPut:CURRent:AMPLitude . 249
OUTPut:CURRent:AMPLitude? . 250
OUTPut:CURRent[:STATe] . 251
OUTPut:CURRent[:STATe]? . 251
OUTPut:POLarity . 252
OUTPut:POLarity? . 252
OUTPut:SHUNt . 253
OUTPut:SHUNt? . 253
OUTPut:TTLTrg:SOURce . 254
OUTPut:TTLTrg:SOURce? . 254
OUTPut:TTLTrg<n>[:STATe] . 255
OUTPut:TTLTrg<n>[:STATe]? . 255
OUTPut:TYPE . 255
OUTPut:TYPE? . 256
OUTPut:VOLTage:AMPLitude . 256
OUTPut:VOLTage:AMPLitude? . 257

ROUTe . 258
ROUTe:SEQuence:DEFine? . 258
ROUTe:SEQuence:POINts? . 259

SAMPle . 260
SAMPle:TIMer . 260
SAMPle:TIMer? . 260

[SENSe] . 262
[SENSe:]CHANnel:SETTling . 263
[SENSe:]CHANnel:SETTling? . 264
[SENSe:]DATA:CVTable? . 264
[SENSe:]DATA:CVTable:RESet . 265
[SENSe:]DATA:FIFO[:ALL]? . 266
[SENSe:]DATA:FIFO:COUNt? . 266
[SENSe:]DATA:FIFO:COUNt:HALF? . 267
[SENSe:]DATA:FIFO:HALF? . 267
[SENSe:]DATA:FIFO:MODE . 268
[SENSe:]DATA:FIFO:MODE? . 269
[SENSe:]DATA:FIFO:PART? . 269
[SENSe:]DATA:FIFO:RESet . 270
[SENSe:]FREQuency:APERture . 270
[SENSe:]FREQuency:APERture? . 271
[SENSe:]FUNCtion:CONDition . 271
[SENSe:]FUNCtion:CUSTom . 272
[SENSe:]FUNCtion:CUSTom:REFerence . 273
[SENSe:]FUNCtion:CUSTom:TCouple . 274
[SENSe:]FUNCtion:FREQuency . 275
[SENSe:]FUNCtion:RESistance . 275
[SENSe:]FUNCtion:STRain . 277
[SENSe:]FUNCtion:TEMPerature . 278
[SENSe:]FUNCtion:TOTalize . 280
[SENSe:]FUNCtion:VOLTage[:DC] . 280
[SENSe:]REFerence . 281
[SENSe:]REFerence:CHANnels . 283
[SENSe:]REFerence:TEMPerature . 284
[SENSe:]STRain:EXCitation . 284
[SENSe:]STRain:EXCitation? . 285

6 Contents

[SENSe:]STRain:GFACtor . 285
[SENSe:]STRain:GFACtor? . 286
[SENSe:]STRain:POISson . 286
[SENSe:]STRain:POISson? . 287
[SENSe:]STRain:UNSTrained . 287
[SENSe:]STRain:UNSTrained? . 288
[SENSe:]TOTalize:RESet:MODE . 288
[SENSe:]TOTalize:RESet:MODE? . 289

SOURce . 290
SOURce:FM[:STATe] . 290
SOURce:FM:STATe? . 291
SOURce:FUNCtion[:SHAPe]:CONDition . 291
SOURce:FUNCtion[:SHAPe]:PULSe . 292
SOURce:FUNCtion[:SHAPe]:SQUare . 292
SOURce:PULM[:STATe] . 292
SOURce:PULM:STATe? . 293
SOURce:PULSe:PERiod . 293
SOURce:PULSe:PERiod? . 294
SOURce:PULSe:WIDTh . 294
SOURce:PULSe:WIDTh? . 294

STATus . 296
STATus:OPERation:CONDition? . 298
STATus:OPERation:ENABle . 299
STATus:OPERation:ENABle? . 300
STATus:OPERation[:EVENt]? . 300
STATus:OPERation:NTRansition . 300
STATus:OPERation:NTRansition? . 301
STATus:OPERation:PTRansition . 301
STATus:OPERation:PTRansition? . 302
STATus:PRESet . 302
 STATus:QUEStionable:CONDition? . 303
STATus:QUEStionable:ENABle . 304
STATus:QUEStionable:ENABle? . 304
STATus:QUEStionable[:EVENt]? . 305
STATus:QUEStionable:NTRansition . 305
STATus:QUEStionable:NTRansition? . 306
STATus:QUEStionable:PTRansition . 306
STATus:QUEStionable:PTRansition? . 307

SYSTem . 308
SYSTem:CTYPe? . 308
SYSTem:ERRor? . 308
SYSTem:VERSion? . 309

TRIGger . 310
TRIGger:COUNt . 312
TRIGger:COUNt? . 312
TRIGger[:IMMediate] . 313
TRIGger:SOURce . 313
TRIGger:SOURce? . 314
TRIGger:TIMer[:PERiod] . 314
TRIGger:TIMer[:PERiod]? . 315

Common Command Reference . 316
*CAL? . 316

Contents 7

*CLS . 317
*DMC <name>,<cmd_data> . 317
*EMC . 317
*EMC? . 317
*ESE <mask> . 317
*ESE? . 318
*ESR? . 318
*GMC? <name> . 318
*IDN? . 318
*LMC? . 319
*OPC . 319
*OPC? . 319
*PMC . 320
*RMC <name> . 320
*RST . 320
*SRE <mask> . 321
*SRE? . 321
*STB? . 321
*TRG . 321
*TST? . 322
*WAI . 325

 Command Quick Reference . 326

Appendix A. Specifications . 333

Appendix B. Error Messages . 363

Appendix C. Glossary . 371

Appendix D. Wiring and Noise Reduction Methods . 375

Separating Digital and Analog SCP Signals . 375
Recommended Wiring and Noise Reduction Techniques 376

Wiring Checklist . 376
HP E1419 Guard Connections . 377
Common Mode Voltage Limits . 377
When to Make Shield Connections . 377

Noise Due to Inadequate Card Grounding . 377
HP E1419 Noise Rejection . 378

Normal Mode Noise (Enm) . 378
Common Mode Noise (Ecm) . 378
Keeping Common Mode Noise out of the Amplifier 378
Reducing Common Mode Rejection Using Tri-Filar Transformers 379

Appendix E. Generating User Defined Functions . 381

Introduction. . 381
Haversine Example. . 382
Limitations. . 384

8 Contents

Certification

Hewlett-Packard Company certifies that this product met its published specifications at the time of shipment from the factory. Hewlett-
Packard further certifies that its calibration measurements are traceable to the United States National Institute of Standards and Tech-
nology (formerly National Bureau of Standards), to the extent allowed by that organization’s calibration facility, and to the calibration
facilities of other International Standards Organization members.

Warranty

This Hewlett-Packard product is warranted against defects in materials and workmanship for a period of three years from date of ship-
ment. Duration and conditions of warranty for this product may be superseded when the product is integrated into (becomes a part of)
other HP products. During the warranty period, Hewlett-Packard Company will, at its option, either repair or replace products which
prove to be defective.

For warranty service or repair, this product must be returned to a service facility designated by Hewlett-Packard (HP). Buyer shall pre-
pay shipping charges to HP and HP shall pay shipping charges to return the product to Buyer. However, Buyer shall pay all shipping
charges, duties, and taxes for products returned to HP from another country.

HP warrants that its software and firmware designated by HP for use with a product will execute its programming instructions when
properly installed on that product. HP does not warrant that the operation of the product, or software, or firmware will be uninterrupted
or error free.

Limitation Of Warranty
The foregoing warranty shall not apply to defects resulting from improper or inadequate maintenance by Buyer, Buyer-supplied prod-
ucts or interfacing, unauthorized modification or misuse, operation outside of the environmental specifications for the product, or im-
proper site preparation or maintenance.

The design and implementation of any circuit on this product is the sole responsibility of the Buyer. HP does not warrant the Buyer’s
circuitry or malfunctions of HP products that result from the Buyer’s circuitry. In addition, HP does not warrant any damage that oc-
curs as a result of the Buyer’s circuit or any defects that result from Buyer-supplied products.

NO OTHER WARRANTY IS EXPRESSED OR IMPLIED. HP SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

Exclusive Remedies
THE REMEDIES PROVIDED HEREIN ARE BUYER’S SOLE AND EXCLUSIVE REMEDIES. HP SHALL NOT BE LIABLE
FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER BASED ON CON-
TRACT, TORT, OR ANY OTHER LEGAL THEORY.

Notice

The information contained in this document is subject to change without notice. HEWLETT-PACKARD (HP) MAKES NO WAR-
RANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WAR-
RANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. HP shall not be liable for errors contained
herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material. This docu-
ment contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photo-
copied, reproduced, or translated to another language without the prior written consent of Hewlett-Packard Company. HP assumes no
responsibility for the use or reliability of its software on equipment that is not furnished by HP.

Restricted Rights Legend

U.S. Government Restricted Rights. The Software and Documentation have been developed entirely at private expense. They are de-
livered and licensed as "commercial computer software" as defined in DFARS 252.227- 7013 (Oct 1988), DFARS 252.211-7015 (May
1991) or DFARS 252.227-7014 (Jun 1995), as a "commercial item" as defined in FAR 2.101(a), or as "Restricted computer software"
as defined in FAR 52.227-19 (Jun 1987)(or any equivalent agency regulation or contract clause), whichever is applicable. You have
only those rights provided for such Software and Documentation by the applicable FAR or DFARS clause or the HP standard software
agreement for the product involved.

HP E1419A Measurement and Control Module User’s Manual
Edition 1

Copyright Hewlett-Packard Company, April 1997

9

Frame or chassis ground terminal—typi-
cally connects to the equipment’s metal
frame.

Alternating current (AC).

Direct current (DC).

Indicates hazardous voltages.

Calls attention to a procedure, practice, or
condition that could cause bodily injury or
death.

Calls attention to a procedure, practice, or con-
dition that could possibly cause damage to
equipment or permanent loss of data.

Indicates the field wiring terminal that must
be connected to earth ground before operat-
ing the equipment—protects against electri-
cal shock in case of fault.

Instruction manual symbol affixed to prod-
uct. Indicates that the user must refer to the
manual for specific WARNING or CAU-
TION information to avoid personal injury
or damage to the product.

or

WARNINGS

The following general safety precautions must be observed during all phases of operation, service, and repair of this product.
Failure to comply with these precautions or with specific warnings elsewhere in this manual violates safety standards of design,
manufacture, and intended use of the product. Hewlett-Packard Company assumes no liability for the customer’s failure to
comply with these requirements.

Ground the equipment: For Safety Class 1 equipment (equipment having a protective earth terminal), an uninterruptible safety earth
ground must be provided from the mains power source to the product input wiring terminals or supplied power cable.

DO NOT operate the product in an explosive atmosphere or in the presence of flammable gases or fumes.

For continued protection against fire, replace the line fuse(s) only with fuse(s) of the same voltage and current rating and type.
DO NOT use repaired fuses or short-circuited fuse holders.

Keep away from live circuits: Operating personnel must not remove equipment covers or shields. Procedures involving the removal
of covers or shields are for use by service-trained personnel only. Under certain conditions, dangerous voltages may exist even with the
equipment switched off. To avoid dangerous electrical shock, DO NOT perform procedures involving cover or shield removal unless
you are qualified to do so.

DO NOT operate damaged equipment: Whenever it is possible that the safety protection features built into this product have been im-
paired, either through physical damage, excessive moisture, or any other reason, REMOVE POWER and do not use the product until
safe operation can be verified by service-trained personnel. If necessary, return the product to a Hewlett-Packard Sales and Service Of-
fice for service and repair to ensure that safety features are maintained.

DO NOT service or adjust alone: Do not attempt internal service or adjustment unless another person, capable of rendering first aid
and resuscitation, is present.

DO NOT substitute parts or modify equipment: Because of the danger of introducing additional hazards, do not install substitute
parts or perform any unauthorized modification to the product. Return the product to a Hewlett-Packard Sales and Service Office for
service and repair to ensure that safety features are maintained.

WARNING

CAUTION

Documentation History

All Editions and Updates of this manual and their creation date are listed below. The first Edition of the manual is Edition 1. The Edi-
tion number increments by 1 whenever the manual is revised. Updates, which are issued between Editions, contain replacement pages
to correct or add additional information to the current Edition of the manual. Whenever a new Edition is created, it will contain all of
the Update information for the previous Edition. Each new Edition or Update also includes a revised copy of this documentation his-
tory page.

Edition 1 . April 1997

Safety Symbols

 10

Declaration of Conformity

according to ISO/IEC Guide 22 and EN 45014

Manufacturer’s Name: Hewlett-Packard Company
Loveland Manufacturing Center

Manufacturer’s Address:815 14th Street S.W.
Loveland, Colorado 80537

declares, that the product:

Product Name: HP Multifunction3OXV

Model Number: HP E1419A

Product Options: All

conforms to the following Product Specifications:

Safety: IEC 1010-1 (1990) Incl. Amend 1 (1992)/EN61010-1 (1993)
CSA C22.2 #1010.1 (1992)
UL 3111-1 (1994)

EMC: CISPR 11:1990/EN55011 (1991): Group1 Class A
IEC 801-2:1991/EN50082-1 (1992): 4kVCD, 8kVAD
IEC 801-3:1984/EN50082-1 (1992): 3 V/m
IEC 801-4:1988/EN50082-1 (1992): 1kV Power Line
 .5kV Signal Lines

Supplementary Information: The product herewith complies with the requirements of the Low Voltage Directive
73/23/EEC and the EMC Directive 89/336/EEC (inclusive 93/68/EEC) and carries the "CE" mark accordingly.

Tested in a typical configuration in an HP C-Size VXI mainframe.

European contact: Your local Hewlett-Packard Sales and Service Office or Hewlett-Packard GmbH, Department
HQ-TRE, Herrenberger Straße 130, D-71034 Böblingen, Germany (FAX +49-7031-14-3143).

March, 1997 Jim White, QA Manager

11

Notes

 12

Chapter 1
Getting Started

About this Chapter

This chapter will explain hardware configuration before installation in a
VXIbus mainframe. By attending to each of these configuration items, your
HP E1419A won’t have to be removed from its mainframe later. Chapter
contents include:

• Configuring the HP E1419A . 13
• Instrument Drivers . 21
• About Example Programs . 21
• Verifying a Successful Configuration 21

 Configuring the HP E1419A

There are several aspects to configuring the module before installing it in a
VXIbus mainframe. They are:

• Setting the Logical Address Switch 14
• Installing Signal Conditioning Plug-ons 15
• Disabling the Input Protect Feature 19
• Disabling Flash Memory Access . 19

For most applications you will only need to change the Logical Address
switch and install SCPs prior to installation in a mainframe. The other
settings can be used as delivered.

Switch/Jumper Setting

Logical Address Switch 208

Input Protect Jumper Protected

Flash Memory Protect Jumper PROG

NOTE Setting the VXIbus Interrupt Level: The HP E1419A uses a default VXIbus
interrupt level of 1. The default setting is in effect at power-on and after a
*RST command. You can change the interrupt level by executing the
DIAGnostic:INTerrupt[:LINe] command in your application program.

Chapter 1 Getting Started 13

Setting the Logical
Address Switch

Follow the next figure and ignore any switch numbering printed on the
Logical Address switch. When installing more than one HP E1419A in a
single VXIbus Mainframe, set each instrument to a different Logical
Address.

Setting Logical Address Switch E1419A

14 Getting Started Chapter 1

Installing Signal
Conditioning

Plug-ons

The following illustrations show the steps you’ll use to install Signal
Conditioning Plug-ons. The HP E1419A supports only non-programmable
analog input SCPs in positions 0 through 3. Any mix of SCP types can be
installed in SCP positions 4 through 7.

 CAUTION Use approved Static Discharge Safe handling procedures anytime you have
the covers removed from the HP E1419A or are handling SCPs.

1 Installing SCPs: Removing the Cover E1419A

Chapter 1 Getting Started 15

Note The only SCPs supported in SCP positions 0 through 3 are:
HP E1501 HP E1513
HP E1502 HP E1514
HP E1508 HP E1515
HP E1509 HP E1516
HP E1512 HP E1517

2 Installing SCPs E1419A

16 Getting Started Chapter 1

3 Installing SCPs: Reinstalling the Cover E1419A

Chapter 1 Getting Started 17

4 Installing SCPs: Labeling E1419A

18 Getting Started Chapter 1

Disabling the Input
Protect Feature

(optional)

Disabling the Input Protect feature voids the HP E1419A’s warranty. The
Input Protect feature allows the HP E1419A to open all channel input relays
if any input’s voltage exceeds ±19 volts (±6 volts for non-isolated digital
I/O SCPs). This feature will help to protect the card’s Signal Conditioning
Plug-ons, input multiplexer, ranging amplifier, and A/D from destructive
voltage levels. The level that trips the protection function has been set to
provide a high probability of protection. The voltage level that is certain to
cause damage is somewhat higher. If in your application the importance
of completing a measurement run outweighs the added risk of damage
to your HP E1419A, you may choose to disable the Input Protect
feature.

VOIDS WARRANTY Disabling the Input Protection Feature voids the HP E1419A’s warranty.

To disable the Input Protection feature, locate and cut JM2202. Make a
single cut in the jumper and bend the adjacent ends apart. See following
illustration for location of JM2202.

Disabling Flash
Memory Access

(optional)

The Flash Memory Protect Jumper (JM2201) is shipped in the “PROG”
position. We recommend that you leave the jumper in this position so that
all of the calibration commands can function. Changing the jumper to the
protect position will mean you won’t be able to execute:

• The SCPI calibration command CAL:STORE ADC | TARE
• The register-based calibration commands STORECAL, and

STORETAR
• Any application that installs firmware-updates or makes any other

modification to Flash Memory through the A24 window.

With the jumper in the “PROG” position, you can completely calibrate one
or more HP E1419As without removing them from the application system.
An HP E1419A calibrated in its working environment will in general be
better calibrated than if it were calibrated separate from its application
system.

The multimeter you use during the periodic calibration cycle should be
considered your calibration transfer standard. Have your Calibration
Organization control unauthorized access to its calibration constants. See the
HP E1419A Service Manual for complete information on HP E1419A
periodic calibration.

If you must limit access to the HP E1419A’s calibration constants, you can
place JM2201 in the protected position and cover the shield retaining screws
with calibration stickers. See following illustration for location of JM2201.

Chapter 1 Getting Started 19

Accessing and Locating JM2201 and JM2202 E1419A

20 Getting Started Chapter 1

Instrument Drivers

The HP E1405B/E1406, down-loadable driver is supplied with your
HP E1419A on the "HP Instrument Drivers" CD ROM. To download this
driver into your HP E1406A Command module, run the Setup program on
the CD, click on "continue", then click on "Perform Installations", then
select "Download SCPI Drivers into Command Modules". This sequence
starts the HP VIC installation. HP VIC will help you configure your VXI
system, including downloading the HP E1419’s driver.

About Example Programs

Examples on CD All example programs mentioned by file name in this manual are available
on the "Driver CD ROM" supplied with your HP E1419A. See the HP VEE
Program Examples Chapter, page 147 for specific location of files on the
CD.

Example Command
Sequences

Where programming concepts are discussed in this manual, the commands
to send to the HP E1419A are shown in the form of command sequences.
These are not example programs because they are not written in any
computer language. They are meant to show the HP E1419A SCPI
commands in the sequence they should be sent. Where necessary, these
sequences include comments to describe program flow and control such as
loop - end loop, and if - end if. See the code sequence on page 3-85 for an
example.

Verifying a Successful Configuration

Among the HP VEE example programs supplied with your HP E1419A is a
program (file name "panl1419.vee") that can be used to check out your
HP E1419A configuration and installation. When you start this "Front
Panel" program, it communicates with your HP E1419A and executes
instructions to determine and display the installed SCP types. It also
simulates a strip chart recorder so you can select input channels to monitor
and display. "Buttons" are included that will run the HP E1419A’s self-test
as well as well as perform an "auto-calibration". Self-test and Cal can take 3
to 15 minutes to coplete depending upon the number and type of SCPs you
have installed in your HP E1419A.

Note When you load the first HP VEE program that communicates with your
HP E1419A, HP VEE will display a dialog box asking for the HP-IB
address string to use. The typical HP-IB address is "70926" for an
HP E1419A at logical address 208, and an HP E1406 at HP-IB address 09.

Chapter 1 Getting Started 21

22 Getting Started Chapter 1

Chapter 2
Field Wiring

About This Chapter

This chapter shows how to plan and connect field wiring to the HP E1419’s
Terminal Module. The chapter explains proper connection of analog signals
to the HP E1419, both two-wire voltage type and four-wire resistance type
measurements. Connections for other measurement types (e.g., strain using
the Bridge Completion SCPs) refer to specific SCP manual in the "SCP
Manuals" section. Chapter contents include:

• Planning Wiring Layout for the HP E1419 23
• Faceplate Connector Pin-Signal List 27
• Optional Terminal Modules . 28
• Reference Temperature Sensing with the HP E1419 31
• Configuring the On-Board/Remote Reference Jumpers 32
• Preferred Measurement Connections. 35
• Wiring and Attaching the Terminal Modules 41
• Attaching/Removing the Terminal Modules 43
• Adding Components to the Option 12 Terminal Module . . . 44
• Option 11 Terminal Module Wiring Map 42
• Option 12 Terminal Module Wiring Map 43
• The Option A3F . 44

Planning Your Wiring Layout

To help you plan field wiring connections to your HP E1419A this section
will provide you with a high-level overview of the HP E1419A’s signal
paths between the face plate connectors and the Control Processor (DSP).
To eliminate any surprises after your system is wired, we will also cover
any configuration interdependencies or other limiting situations (there are
very few with the HP E1419A).

SCP Positions and
Channel Numbers

The HP E1419A has a fixed relationship between Signal Conditioning
Plug-on positions and their channel assignments. See Figure 2-1 for this
discussion. Each of the eight SCP positions can connect to eight channels.
Each channel signal path consists of both a High and Low signal path (for
differential analog signals). Some SCP models will connect to fewer of
these eight channels and those left unconnected cannot be used for other
purposes. The HP E1533 Digital I/O SCP on the other hand will use each
High and Low channel to provide 16 digital bits from a single SCP position.

Chapter 2 Field Wiring 23

SCP Types and
Signal Paths

 Different SCP types (analog sense, analog source, digital I/O) use different
signal paths in the HP E1419A. We’ll discuss each of these basic types.

Analog Sense SCPs Analog sense SCPs connect signals at the faceplate connector and pass these
signals (most with signal amplification and/or filtering) to the analog
multiplexer and thus to the A/D for measurement. Here the primary signal

Figure 2-1 Channel Numbers at SCP Positions

24 Field Wiring Chapter 2

path is along the analog Hi and Lo lines. The SCP Bus carries digital signals
to control the programmable parameters on the HP E1503 and HP E1510.

Analog Source SCPs The primary signal path for analog source SCPs like the HP E1505
Resistance Current Source, the HP E1531 Voltage DAC, and the HP E1532
Current DAC is along the Hi and Lo lines from the SCP to the face plate
connectors. The path from the SCP to the analog multiplexer can be used to
read and verify the approximate output (although this path is not calibrated).
The SCP Bus carries digital signals to these SCPs to control their output
levels.

Combined Analog
Source and Sense

SCPs

The HP E1506, HP E1507, and HP E1511 Strain Completion SCPs as well
as the HP E1518 Resistance Measurement SCP combine analog sense and
analog sources in a single SCP. With these SCPs, some channels will be
used to sense measurement values while others will be used to carry analog
excitation voltage or current. Again the SCP Bus carries digital signals to
control SCP source level and/or measurement configuration.

Digital SCPs With digital SCPs, the signal path to and from the face plate connectors and
the SCP is as always, the Hi and Lo signal paths. The HP E1534, HP E1536,
and HP E1538 digital SCPs provide one digial bit per Hi and Lo pair while
the HP E1533 provides 16 digital bits from a single SCP position by
connecting 8 bits to the channel Hi lines and another 8 bits to the channel Lo
lines. With digital SCPs, the SCP Bus is the only data path between the
Control Processor and the SCP for both data and configuration control.

Pairing Sense and
Source SCPs for

Resistance
Measurements

Resistance measurements and resistance-temperature measurements require
supplying an excitation current to the resistive element to be measured. With
the HP E1419A, two channels are required for each resistance to be
measured. Resistances are always measured in a Four-Wire configuration.
The HP E1505 Current Source SCP provides 8 excitation supplies that can
be paired with any available analog sense channels to complete the
measurement circuit. The HP E1518 Resistance Measurement SCP provides
4 excitation supplies and 4 amplified sense channels on a single SCP. In
either case the source and sense channels must be paired together to make
the resistance measurement. Figure 2-2 illustrates an example of "pairing"
source SCP channels with sense SCP channels.

Chapter 2 Field Wiring 25

Planning for
Thermocouple
Measurements

You can wire your thermocouples and your thermocouple reference
temperature sensor to any of the HP E1419’s channels. When you execute
your scan list, you only have to make sure that the reference temperature
sensor is specified in the channel sequence before any of the associated
thermocouple channels (see the [SENSe:]REF:CHAN command).

External wiring and connections to the HP E1419 are made using the
Terminal Module (see page 2-41).

NOTE The isothermal reference temperature measurement made by an HP E1419
applies only to thermocouple measurements made by that instrument and
through the terminal blocks associated with the reference temperature sensor
(for increased isothermal reference accuracy the HP 1586 Rack Mount
Terminal Panel has three reference temperature thermistors). In systems
with multiple HP E1419s, each instrument must make its own reference
measurements. The reference measurement made by one HP E1419 can not
be used to compensate thermocouple measurements made by another
HP E1419.

Figure 2-2 Pairing Source and Sense SCP Channels

26 Field Wiring Chapter 2

Faceplate Connector Pin-Signal Lists

Figure 2-3 shows the Faceplate Connector Pin Signal List for the
HP E1419A.

Figure 2-3 HP E1419A Faceplate Connector Pin Signals

Chapter 2 Field Wiring 27

Optional Terminal Modules

The HP E1419A Option 11 Terminal Module has screw type terminal
blocks. The HP E1419A Option 12 Terminal Module has spring clamp type
terminal blocks. Both of these Terminal Modules provide:

• Terminal block connections to field wiring.
• Strain relief for the wiring bundle.
• Reference junction temperature sensing for thermocouple

measurements.

The HP E1419A Option A3F Terminal Module is available to interface the
HP E1419A to an HP E1586A rack mount terminal panel (see Page 44).

The SCPs and
Terminal Module

Connections

The same Terminal is used for all field wiring regardless of which Signal
Conditioning Plug-on (SCP) is used. Each SCP includes a set of labels to
map that SCP’s channels to the Terminal Module’s terminal blocks. See
step 4 in "Installing Signal Conditioning Plug-ons" in Chapter 1 page 18 for
HP E1419 Terminal Modules.

Note The SCPs HP E1531 through HP E1537 do not include wiring labels for the
Option 11 terminal module. For these SCPs use the connection tables in the
SCP’s manual along with the Option 11 wiring map on page 42.

28 Field Wiring Chapter 2

Option 11 Terminal
Module Layout

Figure 2-4 shows the Option 11 Screw Terminal Module feature and
connector locations.

Figure 2-4 The Option 11 Screw Terminal Module

Chapter 2 Field Wiring 29

Option 12 Terminal
Module Layout

Figure 2-5 shows the Option 12 Spring Terminal Module features and
connector locations.

Figure 2-5 The Option 12 Spring Terminal Module

30 Field Wiring Chapter 2

Reference Temperature Sensing with the HP E1419A

The Terminal Modules provide an on-board thermistor for sensing
isothermal reference temperature of the terminal blocks. Also provided is a
jumper set (JM1 in Figures 2-5 and 2-4) to route the HP E1419A’s on-board
current source to a thermistor or RTD on a remote isothermal reference
block. Figures 2-6 and 2-7 show connections for both local and remote
sensing.

Figure 2-6 Remote Thermistor or RTD Connections

Figure 2-7 On-Board Thermistor Connections

Chapter 2 Field Wiring 31

Configuring the On-board/Remote Reference Jumpers

Figure 2-8 shows how to set the Option 12’s jumpers for on-board and
remote thermocouple reference temperature measurement. Figure 2-2 shows
the jumpers on the Option 11 Terminal Module. The Thermistor is used for
reference junction temperature sensing for thermocouple measurements.

See figure on page 37 to remove the cover

Figure 2-8 Temperature Sensing for HP E1419 Terminal Module

32 Field Wiring Chapter 2

Terminal Module
Considerations for

Thermocouple
Measurements

The isothermal characteristics of the Terminal Modules are crucial for good
TC readings and can be affected by any of the following factors:

1. The clear plastic cover must be on the Terminal Module.
2. The thin white mylar thermal barrier must be inserted over the

Terminal Module connector (Option 12 only). This prevents airflow
from the HP E1419A into the Terminal Module.

3. The Terminal Module must also be in a fairly stable temperature
environment, and it is best to minimize the temperature gradient
between the HP E1419 and the Terminal Module.

4. The VXI mainframe cooling fan filters must be clean and there
should be as much clear space in front of the fan intakes as possible.

5. Recirculating warm air inside a closed rack cabinet can cause a
problem if the Terminal Module is suspended into ambient air that is
significantly warmer or cooler. If the mainframe recess is mounted in
a rack with both front and rear doors, closing both doors helps keep
the entire HP E1419 at a uniform temperature. If there is no front
door, try opening the back door to allow the mainframe to cool to the
temperature of the Terminal Module.

6. HP recommends that the cooling fan switch on the back of the of an
HP E1401 Mainframe is in the "High" position. The normal variable
speed cooling fan control can make the internal HP E1419 module
temperature cycle up and down, which affects the amplifiers with
these uV level signals.

Chapter 2 Field Wiring 33

Preferred Measurement Connections

For any A/D Module to scan channels at high speeds, it must use a very
short sample period (<10µsecond for the HP E1419). If significant normal
mode noise is presented to its inputs, that noise will be part of the
measurement. To make quiet, accurate measurements in electrically noisy
environments, use properly connected shielded wiring between the A/D and
the device under test. Figure 2-9 shows recommended connections for
powered transducers, thermocouples, and resistance transducers. (See
Appendix D for more information on Wiring Techniques).

HINTS 1. Try to install Analog SCPs relative to Digital I/O as shown in
"Separating Digital and Analog Signals" in Appendix D.

2. Use individually shielded, twisted-pair wiring for each channel.
3. Connect the shield of each wiring pair to the corresponding Guard

(G) terminal on the Terminal Module (see Figure 2-10 for schematic
of Guard to Ground circuitry on the Terminal Module).

4. The Terminal Module is shipped with the Ground-Guard
(GND-GRD) shorting jumper installed for each channel. These may
be left installed or removed (see Figure 2-11 to remove the jumper),
dependent on the following conditions:

a. Grounded Transducer with shield connected to ground at the
transducer: Low frequency ground loops (DC and/or 50/60Hz)
can result if the shield is also grounded at the Terminal Module
end. To prevent this, remove the GND-GRD jumper for that
channel (Figure 2-9 A/C).

b. Floating Transducer with shield connected to the transducer at
the source: In this case, the best performance will most likely be
achieved by leaving the GND-GRD jumper in place (Figure 2-9
B/D).

5. In general, the GND-GRD jumper can be left in place unless it is
necessary to remove to break low frequency (below 1 kHz) ground
loops.

6. Use good quality foil or braided shield signal cable.
7. Route signal leads as far as possible from the sources of greatest

noise.
8. In general, don’t connect Hi or Lo to Guard or Ground at the

HP E1419.
9. It is best if there is a D.C. path somewhere in the system from Hi or

Lo to Guard/Ground.
10. The impedance from Hi to Guard/Ground should be the same as from

Lo to Guard/Ground (balanced).
11. Since each system is different, don’t be afraid to experiment using the

suggestions presented here until you find an acceptable noise level.

IMPORTANT!

34 Field Wiring Chapter 2

Figure 2-9 Preferred Signal Connections

Chapter 2 Field Wiring 35

Figure 2-10 GRD/GND Circuitry Opt. 12 Terminal Module

Figure 2-11 Grounding Option 12 Guard Terminals

36 Field Wiring Chapter 2

Figure 2-12 Wiring and Connecting the E1419 Terminal Module

Chapter 2 Field Wiring 37

Figure 2-13 Wiring and Connecting the E1419 Terminal Module (Cont.)

38 Field Wiring Chapter 2

Figure 2-14 Attaching the HP E1419 Terminal Module

Chapter 2 Field Wiring 39

Figure 2-15 Removing the HP E1419 Terminal Module

40 Field Wiring Chapter 2

Wiring and Attaching the Terminal Module

Figures 2-12 and 2-13 show how to open, wire, and attach the terminal
module to an HP E1419.

Figure 2-16 Additional Component Location Information

Figure 2-17 Series & Parallel Component Examples

Chapter 2 Field Wiring 41

Figure 2-18 HP E1419A Option 11 Terminal Module Map

42 Field Wiring Chapter 2

Attaching/Removing the HP E1419 Terminal Module

Figure 2-14 shows how to attach the terminal module to the HP E1419 and

Figure 2-15 shows how to remove it.

Figure 2-19 HP E1419A Option 12 Terminal Module Map

Chapter 2 Field Wiring 43

Adding Components to the Option 12 Terminal Module

The back of the terminal module P.C. board provides surface mount pads
which you can use to add serial and parallel components to any channel’s

signal path. Figure 2-16 shows additional component locator information
(see the schematic and pad layout information on the back of the teminal
module P.C. board). Figure 2-17 shows some usage example schematics.

Figure 2-20 Option A3F

44 Field Wiring Chapter 2

Option 11 Terminal Module Wiring Map

Figure 2-18 shows the Terminal Module map for the HP E1419.

Option 12 Terminal Module Wiring Map

Figure 2-19 shows the Terminal Module map for the HP E1419.

The Option A3F

Option A3F allows an HP E1419 to be connected to an HP E1586 Rack
Mount Terminal Panel. The option provides 4 SCSI plugs on a Terminal
Module to make connections to the Rack Mount Terminal Panel using 4
separately ordered SCSI cables. Option A3F Is shown in Figure 2-20.

Rack Mount Terminal
Panel Accessories

There are two different cables available to connect the HP E1586 Rack
Mount Terminal Panel to the HP E1419 Option A3F. In both cases, four
cables are required if all 64-channels are needed. These cables do not come
with the HP E1419A Option A3F and must be ordered separately.

Standard Cable

This cable (HP E1588A) is a 16-channel twisted pair cable with an outer
shield. This cable is suitable for relatively short cable runs.

Custom Length Cable

This cable (HP Z2220A Option 050) is available in custom lengths. It is a
16-channel twisted pair cable with each twisted pair individually shielded to
provide better quality shielding for longer cable runs.

HF Common Mode Filters

Optional High Frequency Common Mode Filters are on the HP E1586 Rack
Mount Terminal Panel’s input channels (HP E1586 Option 001, RF Filters).
They filter out AC common mode signals present in the cable that connects
between the terminal panel and the device under test. The filters are useful
for filtering out small common mode signals below 5 Vp-p. To order these
filters, order HP E1586 Option 001.

Chapter 2 Field Wiring 45

46 Field Wiring Chapter 2

Chapter 3
Programming the HP E1419A

MultifunctionPlus

About This Chapter

The focus of this chapter is to show the programming model of the
HP E1419 MultifunctionPlus Data Acquisition and Control System. You
will be introduced to the concept of configuring the E1419 using SCPI,
organizing ’C’ programs that execute directly on the E1419 VXI card, using
those ’C’ programs to make high-speed decisions, and acquiring data from
the E1419’s sophisticated FIFO and Current Value Table to display within
the powerful HP VEE graphical environment. This chapter contains:

• Overview of the HP E1419A MultifunctionPlus 48
Operatinging Model . 52

• Executing the Programming Model 53
Programming Overview Diagram 56

- Setting up Analog Input and Output Channels 57
Configuring Programmable SCP Parameters 57
Linking Input Channels to EU Conversion 59
Linking Output Channels to Functions 67

- Setting up Digital Input and Output Channels 67
Digital Input Channels . 67
Digital Output Channels . 68

- Performing Channel Calibration (Important!) 72
- Defining C Language Algorithms 74
- Pre-setting Algorithm variables and coefficients 75
- Defining Data Storage . 76

Specifying the Data Format . 76
Selecting the FIFO Mode . 77

- Setting up the Trigger System . 78
Arm and Trigger Sources . 78
Programming the Trigger Timer 80

- INITiating/Running Algorithms . 81
- Retrieving Algorithm Data . 83

Reading Algorithm Variables . 83
- Modifying Algorithm Variables . 86

Updating Algorithm Variables 86
Enabling/Disabling Algorithms 87
Setting Algorithm Execution Frequency 88

• Using the Status System . 90
• HP E1419A Background Operation 96
• Updating the Status System and VXI Interrupts 97
• Creating and Loading Custom EU Tables 98
• Compensating for System Offsets . 100
• Detecting Open Transducers . 103

Chapter 3 Programming the HP E1419A 47

• More on Auto Ranging . 104
• Settling Characteristics . 104

Overview of the HP E1419 MultifunctionPlus

This section describes how the HP E1419 gathers input data, executes its
’C’ algorithms, and sends its output data. Figure 3-1 shows a simplied
functional block diagram.

MultifunctionPlus? The HP E1419 is a complete data acqusition and control system on a single
VXI card. It is multifunction because it uses the Signal Conditioning
Plug-on(SCP) concept whereby you can mix and match your analog
input/output and digital input/output channels to meet various application
needs. It is MultifunctionPlus because it has local intelligence to permit the
card to run stand-alone with very little interaction required with the
supervisory computer.

The HP E1419 has eight SCP slots with each SCP slot capable of addressing
up to 8 channels of input or output channels for a total of 64 channels. The
first 4 SCP slots(which represent channels numbers 100-131) can mix and
match any non-programmable analog input SCP such as fixed gain, fixed

Figure 3-1 Simplified Functional Block Diagram

48 Programming the HP E1419A Chapter 3

filter, straight-through, etc. The standard configuration of the HP E1419 is
four straight-through E1501 SCP’s that provide high-level signal input
capabilities. The remaining the 4 SCP slots can be used for any of the
twenty-plus analog/digital SCP’s available for the E1419 which cover most
data acquisition and control needs.

You configure the input and output SCP’s with the SCPI programming
language. Analog SCP’s are measured with the E1419’s A/D. Configuring
the analog SCP’s includes specifying what type of Engineering Unit(EU)
conversion you want for each analog input channel. For example, one
channel may require a type T thermocouple conversion and another may be
a resistance measurement. The on-board Digital Signal Processor(DSP)
converts the voltage read across the analog input channel and applies a
high-speed conversion which results in temperature, resistance, etc. Digital
input SCP’s perform their own conversions as configured by the SCPI
language.

When the Trigger System is configured and either generates its own trigger
or accepts a trigger from an external source, all digital input SCP’s latch
their current input state and the A/D starts scanning the analog channels.
All measurement data is represented as 32-bit real numbers even if the input
channel is inherently integer. The EU-converted numbers such as
temperature, strain, resistance, volts, state, frequency, etc. are stored in an
Input Buffer and later accessed by ’C’ programs executing on the E1419
card. Approximately 2000 lines of user-written ’C’ code can be downloaded
into the E1419’s memory and can be split among up to 32 algorithms. HP
refers to these as algorithms because an algorithm is a step-by-step
procedure for solving some problem or accomplishing some end. Though
the documentation continues to refer to the ’C’ code as algorithms, you may
think in traditional terms as each algorithm representing a ’C’ function with
a main() program which calls them.

The user-written ’C’ algorithms execute after all analog/digital inputs have
been stored in the Input Buffer. The ’C’ code accesses the measurement
data like constants with the names of I100-I163 representing the 32-bit real
EU-converted numbers. As seen in Figure 3-1, the algorithms have access to
both local and global variables and arrays. The I-variables are inherently
global and accessible by any algorithm. Local variables are only visible to
the particular algorithm(just like in ’C’ functions). Declared global variables
can be shared by any algorithm.

HP VEE can read or write any local or global variable in any algorithm by
using SCPI syntax that actually identifies the variable by name, but a more
efficient means of reading data is available through the E1419’s FIFO and
Current Value Table(CVT). As seen in Figure 3-1, any algorithm can write
any expression or constant to the FIFO/CVT. HP VEE can then read the

Chapter 3 Programming the HP E1419A 49

FIFO/CVT to characterize what’s happening inside the E1419 and to
provide an operator view of any input/output channel, variable, or constant.

Output SCP’s derive their channel values from O-variables that are written
by the algorithms. O100-O163 are read/write global variables that are read
after all algorithms have finished executing. The 32-bit real values are
converted to the appropriate units as defined by the SCPI configuration
commands and written to the various output SCP’s by channel number.

Figure 3-2 illustrates the timing of all these operations and describes the
E1419’s input-update-execute algorithms-output phases. This cycle-based
design is desirable because it results in deterministic operation of the E1419.
That is, the input channels are always scanned, and the output channels are
always written at pre-defined intervals. Note too that any number of input
channels or output channels are accessible by any of up to 32 user-written
algorithms. The algorithms are named ALG1-ALG32 and execute in
numerical order.

Notice the Update Window (phase 2) illustrated in Figure 3-2. This window
has a user-specified length and is used to accept and make changes to local
and global variables from the supervisory computer. Up to 512 scalar or
array changes can be made while executing algorithms. Special care was
taken to make sure all changes take place at the same time so that any
particular algorithm or group of algorithms all operate on the new changes
at a user-specified time. This does not mean that all scalar and array changes
have to be received during one cycle to become effective at the next cycle.
On the contrary, it may take a number of cycles to download new values,

Figure 3-2 HP E1419A Cycle Phases

50 Programming the HP E1419A Chapter 3

especially when trying to re-write 1024 element arrays and especially when
the trigger cycle time is very short.

There are multiple times between the base triggers where scalar and array
changes can be accepted from the supervisory computer, and these changes
are held in a holding buffer until the supervisory computer instructs the
changes to take effect. These changes then take place during the Update
window and take effect BEFORE algorithms start executing. The
"do-update-now" signal can be sent by command(ALG:UPD) or by a
change in a digital input state(ALG:UPD:CHAN). In either case, the
programmer has control over when the new changes take effect.

The E1419’s ability to execute programs directly on the card and its fast
execution speed give the programmer real-time response to changing
conditions. And, programming the card has been made very easy to
understand. HP chose C as the language used to write user programs since
that language is already considered the industry standard. Choosing C
allows you to write algorithms on PC’s or UNIX workstations that have C
compilers, so you can debug algorithms before execution on the card. The
E1419 also provides good debugging tools that permit you to determine
worst-case execution speed, monitor variables while running, and
selectively enable/disable any of the E1419’s 32 algorithms.

HP created a limited and simplified version of C since most applications
need only basic operations: add, subtract, multiply, divide, scalar variables,
arrays, and programming constructs. The programming constructs are
limited to if-then-else to allow conditional evaluation and response to input
changes. Since all algorithms have an opportunity to execute after each
time-base trigger, the if-then-else constructs permit conditional skipping of
cycle intervals so that some code segments or algorithms can execute at
multiples of the cycle time instead of every cycle.

Looping constructs such as for or while are purposely left out of the
language so that user programs are deterministic. Note that looping is not
really needed for most applications since the cycle interval execution(via the
trigger system) of every algorithm has inherent repeat looping. With no
language looping constructs, the HP E1419’s C compiler can perform a
worst-case branch analysis of user programs and return the execution time
for determining the minimum time-base interval. Making this timing query
available allows the programmer to know exactly how much time may be
required to execute any/all phases before attempting to set up physical test
conditions.

Note the darker shaded portion at the end of the Execute Algorithms Phase
in Figure 3-2 . The conditional execution of code can cause the length of
this phase to move back and forth like an accordion. This can cause
undesirable output jitter when the beginning of the output phase starts

Chapter 3 Programming the HP E1419A 51

immediately after the last user algorithm executes. The HP E1419’s design
allows the user to specify when output signals begin relative to the start of
the trigger cycle. Outputs then always occur at the same time, every time.

The programming task is further made easy with this design because all the
difficult structure of handling input and output channels is done
automatically. This is not true of many other products that may have several
ways to acquire measurement data or write results to its I/O channels. When
the E1419’s user-written C algorithms are compiled, input channels and
output channels are detected in the algorithms and are automatically
grouped and configured for the Input and Output phases as seen in Figure
3-2 . Each algorithm simply accesses input channels as variables and writes
to output channels as variables. The rest is handled and optimized by the
Input and Output phases. You’re left to think of solving your application in
terms of input and output values variables rather than worrying about how

to deal with each SCP’s differences.

Operating Model

The E1419 card operates in one or two states: either the "idle" state or the
"running" state. The "idle" can be referred to as "Before INIT" and the
"running" state can be referred to as "After INIT". See Figure 3-3 for the

Figure 3-3 Module States

52 Programming the HP E1419A Chapter 3

following discussion.

"Before INIT" positions the card in the Trigger Idle State, and its DSP chip
is ready to accept virtually all SCPI commands. This is the time when
configuring and set up operations are performed. This would include linking
Engineering Unit conversions to channels, designating digital input/output
channels, downloading algorithms, etc.

"After INIT" (and when trigger events are taking place), the DSP is busy
measuring input channels, executing algorithms, and updating outputs.
However, there are periods of time between trigger events where the DSP is
waiting for I/O or just waiting for the next trigger event. This time is utilized
to accept a limited command set from the supervisory program(HP VEE, for
example) to change scalars, arrays/elements, or to download new
algorithms. HP VEE communicates with the E1419’s driver, and the driver
then interfaces with the DSP, FIFO, CVT, etc., in cooperation with the
operating state. The "When Accepted:" comments in the Command
Reference Chapter specify which commands may be accepted before or
after INIT.

Executing The Programming Model

This section shows the sequence of programming steps that should be used
for the HP E1419. Within each step, most of the available choices are shown
using example command sequences. Further details about various SCPI
commands can be found in the Command Reference Chapter 6. A
"command sequence" example can be found on page 85 of this chapter.
Many HP VEE programming examples can be found in Chapter 5.

Important Most programming difficulties can be resolved if you know what’s wrong.
It is very important while developing your application that you include error
checking at least at the end of each major programming step by using the
SYST:ERR? query command. More often may be desirable for complex
sequences of commands in any particular step.

Power-on and *RST
Default Settings

Some of the programming operations that follow may already be set after
Power-ON or after a *RST command. Where these default settings coincide
with the configuration settings you require, you do not need to explicitly
execute a command to set them. These are the default settings:

• No algorithms are defined and therefore no channels will be scanned

Chapter 3 Programming the HP E1419A 53

• Programmable SCP’s are configured to their Power-ON defaults (see
the SCP’s manual for these defaults)

• All analog input channels are linked to EU conversion for voltage
• All non-isolated digital I/O channels are set to input static digital state
• HP E1536 Isolated digital I/O channels are switch configured and

wake up as such
• Trigger subsystem set to: ARM:SOURCE IMM,

TRIG:SOUR TIMER, TRIG:COUNT INFinite, and
TRIG:TIMER 0.010.

• FIFO/CVT data returned in ASCII format
• FIFO set to BLOCking mode to disallow overwriting of unread data

Figure 3-4 shows a comprehensive step-by-step programming sequence that
may be required for your application. As stated earlier, many of these steps
need only minimal attention since the most common configurations are
defaulted for you at power-ON or *RST. Figure 3-5 shows a block diagram
of the HP E1419A with the numbered programming steps and various SCPI
commands associated with those steps.

Keep in mind that the first four SCP positions (0 through 3) can only be
configured with non-programmable SCP’s. SCP’s with programmable
gain/filter, digital input/output, analog output, strain gage, etc., are NOT
supported in these slots. This restriction encompasses channels 100-131.

54 Programming the HP E1419A Chapter 3

Figure 3-4 Programming Sequence

Chapter 3 Programming the HP E1419A 55

Figure 3-5 Programming Model Block Diagram

56 Programming the HP E1419A Chapter 3

Setting up Analog Input and Output Channels

This section covers configuring input and output channels to provide the
measurement values and output characteristics that your algorithms need to
operate.

Configuring
Programmable

Analog SCP
Parameters

This step applies only to programmable Signal Conditioning Plug-ons such
as the HP E1503 Programmable Amplifier/Filter SCP, the HP E1505
Current Source SCP, the HP E1518 Resistance Measurement SCP, the HP
E1510 Sample and Hold SCP, and the HP E1511 Transient Strain SCP. See
the particular SCP’s User’s manual to determine the gain, filter cutoff
frequency, or excitation amplitude selections that it may provide.

Note The HP E1419A only supports these programmable analog SCPs on SCP
positions 4 through 7.

Setting SCP Gains An important thing to understand about input amplifier SCPs is that given a
fixed input value at a channel, changes in channel gain do not change the
value your algorithm will receive from that channel. The DSP chip (Digital
Signal Processor) keeps track of SCP gain and Range Amplifier settings,
and "calculates" a value that reflects the signal level at the input terminal.
The only time this in not true is when the SCP gain chosen would cause the
output of the SCP amplifier to be too great for the selected A/D range. As an
example; with SCP gain set to 64, an input signal greater than ±0.25 volts
would cause an over-range reading even with the A/D set to its 16 volt
range.

The gain command for SCPs with programmable amplifiers is:

INPut:GAIN <gain>,(@<ch_list>) to select SCP channel gain.

The gain selections provided by the SCP can be assigned to any channel
individually or in groups. Send a separate command for each gain selection.
An example for the HP E1503 programmable Amp&Filter SCP:

To set the SCP gain to 8 for channels 40, 44, 46, and 48 through 51 send:

INP:GAIN 8,(@140,144,146,148:151)

To set the SCP gain to 16 for channels 56 through 59, and to 64 for channels
60 through 63 send:

INP:GAIN 16,(@156:159)

INP:GAIN 64,(@160:163)

Chapter 3 Programming the HP E1419A 57

Setting Filter
Cutoff Frequency

The commands for programmable filters are:

INPut:FILTer[:LPASs]:FREQuency <cutoff_freq>,(@<ch_list>) to select
cutoff frequency

INPut:FILTer[:LPASs][:STATe] ON | OFF,(@<ch_list> to enable or
disable input filtering

The cutoff frequency selections provided by the SCP can be assigned to any
channel individually or in groups. Send a separate command for each
frequency selection. For example:

To set 10 Hz cutoff for channels 40, 44, 46, and 48 through 51 send:

INP:FILT:FREQ 10,(@140,144,146,148:151)

To set 10 Hz cutoff for channels 56 through 59, and 100 Hz cutoff for
channels 60 through 633 send:

INP:FILT:FREQ 10,(@156:159)

INP:FILT:FREQ 100,(@160:163)

By default (after *RST or at power-on) the filters are enabled (ON). To
disable or re-enable individual (or all) channels, use the INP:FILT ON |
OFF, (@<ch_list>) command. For example, to program filters for channels
56 and 57 off, send:

INP:FILT:STAT Off,(@156:157)

Setting the HP E1505
and HP E1518 Current

Source SCPs

The Current Source SCP supplies excitation current for resistance type
measurements. These include resistance, and temperature measurements
using resistance temperature sensors. The commands to control the
HP E1505 Current Source and HP E1518 Resistance Measurement SCPs
are:
OUTPut:CURRent:AMPLitude <amplitude>,(@<ch_list>) and
OUTPut:CURRent[:STATe] <enable>.

• The amplitude parameter sets the current output level. It is specified
in units of Amps DC and can take on the values 30e-6 (or MIN), and
488e-6 (or MAX). Select 488µA for measuring resistances of less
than 8,000 Ohms. Select 30µA for resistances of 8,000 Ohms and
above.

• The ch_list parameter specifies the Current Source SCP channels that
will be set.

To set channels 40 and 41 to output 30 µA and channels 42 and 43 to output
488 µA:

58 Programming the HP E1419A Chapter 3

OUTP:CURR 30e-6,(@140,141)

OUTP:CURR 488e-6,(@142,143) separate command per output
level

Notes 1. The OUTPut:CURRent:AMPLitude command is only for
programming excitation current used in resistance measurement
configurations. It is does not program output DAC SCPs like the
HP E1532.

2. The HP E1518 Current Measurement SCP is a combinaation of 4
channels of current source (same as the HP E1505), and 4 channels of
amplified analog input (same as the HP E1508). The current source
channels are on the lower four channels of the HP E1518.

Setting the HP E1511
Strain Bridge SCP
Excitation Voltage

The HP E1511 Strain Bridge Completion SCP has a programmable bridge
excitation voltage source. The command to control the excitation supply is
OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>)

• The <amplitude> parameter can specify 0, 1, 2, 5, or 10 volts for the
HP E1511’s excitation voltage.

• The <ch_list> parameter specifies the SCP and bridge channel
excitation supply that will be programmed. There are four excitation
supplies in each HP E1511.

To set the excitation supplies for channels 40 through 43 to output 2 volts:

OUTP:VOLT:AMPL 2,(@140:143)

NOTE The OUTPut:VOLTage:AMPLitude command is only for programming
excitation voltage used measurement configurations. It is does not program
output DAC SCPs like the HP E1531 and HP E1537.

Linking Channels
to EU Conversion

This step links each of the module’s channels to a specific measurement
type. For analog input channels this "tells" the on-board control processor
which EU conversion to apply to the value read on any channel. The
processor is creating a list of conversion types vs. channel numbers.

The commands for linking EU conversion to channels are:

[SENSe:]FUNCtion:RESistance <excite_current>,[<range>,](@<ch_list>)
for resistance measurements

Chapter 3 Programming the HP E1419A 59

[SENSe:]FUNCtion:STRain:… <excite_current>,[<range>,](@<ch_list>)
for strain bridge measurements

[SENSe:]FUNCtion:TEMPerature
<type>,<sub_type>,[<range>,](@<ch_list>) for temperature measurements
with thermocouples, thermistors, or RTDs

[SENSe:]FUNCtion:VOLTage <range>,(@<ch_list>) for voltage
measurements

[SENSe:]FUNCtion:CUSTom <range>,(@<ch_list>) for custom EU
conversions.

NOTE At Power-on and after *RST, the default EU Conversion is autorange
voltage for analog input channels.

Linking Voltage
Measurements

To link channels to the voltage conversion send the
[SENSe:]FUNCtion:VOLTage [<range>,] (@<ch_list>) command.

• The ch_list parameter specifies which channels to link to the voltage
EU conversion.

• The optional range parameter can be used to choose a fixed A/D
range. Valid values are: .0625, .25, 1, 4, 16, or AUTO. When not
specified, the module uses auto-range (AUTO).

To set channels 0 through 15 to measure voltage using auto-range:

SENS:FUNC:VOLT AUTO,(@100:115)

To set channels 0 and 23 to the 16 volt range, and 28 through 31 to the
.0625 volt range:

SENS:FUNC:VOLT 16,(@100,123)

SENS:FUNC:VOLT .625,(@128:131) must send a command per range

Note When using manual range in combination with amplifier SCPs, the EU
conversion will try to return readings which reflect the value of the input
signal. However, it is up to you to choose range values that will provide
good measurement performance (avoiding over-ranges and select ranges
that provide good resolution based on the input signal). In general,
measurements can be made at full speed using auto-range.

60 Programming the HP E1419A Chapter 3

Linking Resistance
Measurements

To link channels to the resistance EU conversion send the
[SENSe:]FUNCtion:RESistance <excite_current>,[<range>,](@<ch_list>)
command.

Resistance measurements assume that there is at least one Current Source
SCP installed (eight current sources per SCP). See Figure 3-6.

• The excite_current parameter is used only to tell the EU conversion
what the Current Source SCP channel is now set to. Excite_current
is specified in Amps DC and the choices for the HP E1505 SCP are
30e-6 (or MIN) and 488e-6 (or MAX). Select 488µA for measuring
resistances of less than 8,000 Ohms. Select 30µA for resistances of
8,000 Ohms and above.

• The optional range parameter can be used to choose a fixed A/D
range. When not specified (defaulted), the module uses auto-range.

• The ch_list parameter specifies which channel(s) to link to the
resistance EU conversion. These channels will sense the voltage
across the unknown resistance. Each can be a Current Source SCP
channel (a two-wire resistance measurement) or a sense channel
separate from the Current Source SCP channel (a four-wire
resistance measurement). See figure 3-6 for diagrams of these
measurement connections.

Figure 3-6 Resistance Measurement Sensing

Chapter 3 Programming the HP E1419A 61

To set channels 0 through 3 to measure resistances greater than 8,000 Ohms
and set channels 4 through 7 to measure resistances less than 8K (in this
case paired to current source SCP channels 32 through 39):

OUTP:CURR:AMPL 30e-6, (@132:135)

set 4 channels to output 30µA for 8KΩ or greater resistances

SENS:FUNC:RES 30e-6, (@100:103)

link channels 0 through 4 to resistance EU conversion (8KΩ or greater)

OUTP:CURR:AMPL 488e-6, (@136:139)

set 4 channels to output 488µA for less than 8KΩ resistances

SENS:FUNC:RES 488e-6, (@104:107)

link channels 4 through 7 to resistance EU conversion (less than 8KΩ)

Linking Temperature
Measurements

To link channels to temperature EU conversion send the
[SENSe:]FUNCtion:TEMPerature <type>, <sub_type>,
[<range>,](@<ch_list>) command.

• The ch_list parameter specifies which channel(s) to link to the
temperature EU conversion.

• The type parameter specifies RTD, THERmistor, or TC (for
ThermoCouple)

• The optional range parameter can be used to choose a fixed A/D
range. When not specified (defaulted), the module uses auto-range.

RTD and Thermistor Measurements

Temperature measurements using resistance type sensors involve all the
same considerations as resistance measurements discussed in the previous
section. See the discussion of Figure 3-6 in "Linking Resistance
Measurements".

For resistance temperature measurements the sub_type parameter specifies:

• For RTDs; "85" or "92" (for 100 Ohm RTDs with 0.00385 or
0.00392 Ohms/Ohm/Degree C temperature coefficients respectively)

• For Thermistors; 2250, 5000, or 10000 (the nominal value of these
devices at 25 degrees C)

NOTES 1. Resistance temperature measurements (RTDs and THERmistors)
require the use of Current Source Signal Conditioning Plug-Ons. The
following table shows the Current Source setting that must be used
for the following RTDs and Thermistors:

62 Programming the HP E1419A Chapter 3

Required Current
Amplitude

Temperature Sensor Types and
Subtypes

MAX (488µA)
MIN (30µA)

RTD,85 | 92 and THER,2250
THER,5000 | 10000

1. sub_type values of 2250, 5000, and 10000 refer to thermistors that
match the Omega 44000 series temperature response curve. These
44000 series thermistors have been selected to match the curve within
0.1 or 0.2°C.

To set channels 0 through 7 to measure temperature using 2,250 Ohm
thermistors (in this case paired to current source SCP channels 32 through
39):

OUTP:CURR:AMPL 488e-6,(@132:139)

set excite current to 488µA on current SCP channels 32 through 39

SENS:FUNC:TEMP THER, 2250, (@100:107)

link channels 0 through 7 to temperature EU conversion for 2,250Ω thermistor

To set channels 8 through 15 to measure temperature using 10,000 Ohm
thermistors (in this case paired to current source SCP channels 40 through
47):

OUTP:CURR:AMPL 30e-6,(@140:147)

set excite current to 30µA on current SCP channels 40 through 47

SENS:FUNC:TEMP THER, 10000, (@108:115)

link channels 8 through 15 to temperature EU conversion for 10,000Ω
thermistor

To set channel 7 to measure temperature using 100 Ohm RTD with a TC of
.00385 Ohm/Ohm/°C (in this case paired to current source SCP channel 39):

OUTP:CURR:AMPL 488e-6,(@139)

set excite current to 488µA on current SCP channels 32 through 47

SENS:FUNC:TEMP RTD, 85, (@107)

link channel 7 to temperature EU conversion for 100Ω RTDs with .00385 TC.

Thermocouple Measurements

Thermocouple measurements are voltage measurements that the EU
conversion changes into temperature values based on the sub_type
parameter and latest reference temperature value.

Chapter 3 Programming the HP E1419A 63

• For Thermocouples the sub_type parameter can specify CUSTom, E,
EEXT, J, K, N, R, S, T (CUSTom is pre-defined as Type K, no
reference junction compensation. EEXT is the type E for extended
temperatures of 800°F or above).

To set channels 24 through 31 to measure temperature using type E
thermocouples:

SENS:FUNC:TEMP TC, E, (@124:131)

(see following section to configure a TC reference measurement)

Thermocouple Reference Temperature Compensation

The isothermal reference temperature is required for thermocouple
temperature EU conversions. The Reference Temperature Register must be
loaded with the current reference temperature before thermocouple channels
are scanned. The Reference Temperature Register can be loaded two ways:

1. By measuring the temperature of an isothermal reference junction
during an input scan.

2. By supplying a constant temperature value (that of a controlled
temperature reference junction) before a scan is started.

Setting up a Reference Temperature Measurement

This operation requires two commands, the [SENSe:]REFerence command
and the [SENSe:]REFerence:CHANnels command.

The [SENSe:]REFerence <type>, <sub_type>,[<range>,](@<ch_list>)
command links channels to the reference temperature EU conversion.

• The ch_list parameter specifies the sense channel that you have
connected to the reference temperature sensor.

• The type parameter can specify THERmistor, RTD, or CUSTom.
THER and RTD, are resistance temperature measurements and use
the on-board 122 µA current source for excitation. CUSTom is
pre-defined as a Type E thermocouple which has a thermally
controlled ice point reference junction.

• The sub_type parameter must specify:

– For RTDs; "85" or "92" (for 100 Ohm RTDs with 0.00385 or
0.00392 Ohms/Ohm/Degree C temperature coefficients
respectively)

– For Thermistors; only "5000" (See previous note on page 3-63)

64 Programming the HP E1419A Chapter 3

– For CUSTom; only "1"

• The optional range parameter can be used to choose a fixed A/D
range. When not specified (defaulted), or set to AUTO, the module
uses auto-range.

Reference Measurement Before Thermocouple Measurements

At this point we are going to introduce you to the concept of the
HP E1419A’s Scan List. As you define each algorithm, the HP E1419A
places any reference to an analog input channel into the Scan List. When
you run algorithms, the scan list tells the HP E1419A which analog channels
to scan during the Input Phase. Since the algorithm has no way to specify
that an input channel is a reference temperature channel, the command:
[SENSe:]REFerence:CHANnels (@<ref_chan>),(@<meas_ch_list>) is
used to place the <ref_chan> channel in the scan list before the related
thermocouple measuring channels. Now when analog channels are scanned,
the HP E1419A will include the reference channel in the scan list and will
scan it before the specified thermocouples are scanned. The reference
measurement will be stored in the Reference Temperature Register. The
reference temperature value is applied to the thermocouple EU conversions
for thermcouple channel measurements that follow.

A Complete Thermocouple Measurement Command Sequence

The command sequence performs these functions:

• Configures reference temperature measurement on channel 15.

• Configures thermocouple measurements on channels 16 through 23.

• Instructs the HP E1419A to add channel 15 to the Scan List and
order channels so channel 15 will be scanned before channels 16
through 23.

SENS:REF THER, 5000, (@115) 5K thermistor temperature for
channel 15

SENS:FUNC:TEMP TC,J,(@116:123) Type J thermocouple temperature
for channels 16 through 23

SENS:REF:CHAN (@115),(@116:123) configure reference channel to be
scanned before channels 16 - 23

Supplying a Fixed Reference Temperature

The [SENSe:]REFerence:TEMPerature <degrees_c> command
immediately stores the temperature of a controlled temperature reference
junction panel in the Reference Temperature Register. The value is applied
to all subsequent thermocouple channel measurements so there is no need to
use SENS:REF:CHANNELS when using SENS:REF:TEMP.

Chapter 3 Programming the HP E1419A 65

To specify the temperature of a controlled temperature reference panel:

SENS:REF:TEMP 50 reference temp = 50 °C

Now begin scan to measure thermocouples

Linking Strain
Measurements

Strain measurements usually employ a Strain Completion and Excitation
SCP (HP E1506,E1507,E1511). To link channels to strain EU conversions
send the [SENSe:]FUNCtion:STRain:<bridge_type>
[<range>,](@<ch_list>)

• <bridge_type> is not a parameter but is part of the command syntax.
The following table relates the command syntax to bridge type. See
the HP E1506 and HP E1507, and HP E1511 SCPs’ user’s manual
for bridge schematics and field wiring information.

Command Bridge Type
:FBENding Full Bending Bridge

:FBPoisson Full Bending Poisson Bridge

:FPOisson Full Poisson Bridge

:HBENding Half Bending Bridge

:HPOisson Half Poisson Bridge

[:QUARter] Quarter Bridge (default)

• The ch_list parameter specifies which sense SCP channel(s) to
link to the strain EU conversion. ch_list does not specify channels
on the HP E1506, and 07 Strain Bridge Completion SCPs but does
specify one of the lower four channels of an HP E1511 SCP.

• The optional range parameter can be used to choose a fixed A/D
range. When not specified (defaulted), the module uses auto-range.

To link channels 40 through 43 to the quarter bridge strain EU conversion:

SENS:FUNC:STR:QUAR (@140:143) uses autorange

Other commands used to set up strain measurements are:
[SENSe:]STRain:POISson
[SENSe:]STRain:EXCitation
[SENSe:]STRain:GFACtor
[SENSe:]STRain:UNSTrained

For more detailed programming information, see the individual SCP manual.

NOTE Because of the number of possible strain gage configurations, the driver
must generate any Strain EU conversion tables and download them to the
instrument when INITiate is executed. This can cause the time to complete
the INIT command to exceed 1 minute.

66 Programming the HP E1419A Chapter 3

Custom EU
Conversions

See "Creating and Loading Custom EU Conversion Tables" on page 3-98.

Linking Output
Channels to

Functions

Analog outputs are implemented either by an HP E1531 or HP E1537
Voltage Output SCP or an HP E1532 Current Output SCP. Channels where
these SCPs are installed are automatically considered outputs. No
SOURce:FUNCtion command is required since the HP E1531 and
HP E1537 can only output voltage, while the HP E1532 can only output
current. The only way to control the output amplitude of these SCPs is
through the HP E1419A’s Algorithm Language.

Setting up Digital Input and Output Channels

Setting up Digital
Inputs

Digital inputs can be configured for polarity and depending on the SCP
model, a selection of input functions as well. The following discussion will
explain which functions are available with a particular Digital I/O SCP
model. For Digital SCPs who’s data direction is programmable, setting a
digital channel’s input function is what defines it as an input channel. The
HP E1536 Isolated Digital I/O SCP’s data direction is set by configuration
switches so the SENSe:FUNCtion and SOURce:FUNCtion commands do
not apply.

Setting Input Polarity To specify the input polarity (logical sense) for digital channels use the
command INPut:POLarity <mode>,(@<ch_list>). This capability is
available on all digital SCP models. This setting is valid even while the
specified channel in not an input channel. If and when the channel is
configured for input (an input FUNCtion command), the setting will be in
effect. For the HP E1536 the INP:POL command is disallowed for output
channels.

• The <mode> paramter can be either NORMal or INVerted. When set
to NORM, an input channel with 3v applied will return a logical 1.
When set to INV, a channel with 3v applied will return a logic 0.

• The <ch_list> parameter specifies the channels to configure. The
HP E1533 has 2 channels of 8 bits each. All 8 bits in a channel take
on the configuration specified for the channel. The HP E1534 has 8
I/O bits that are individually configured as channels.

To configure the lower 8 bit channel of an HP E1533 for inverted polarity:

INP:POLARITY INV,(@156) SCP in SCP position 7

To configure the lower 4 bits of an HP E1534 for inverted polarity:

INP:POL INV,(@148:151) SCP in SCP position 6

Chapter 3 Programming the HP E1419A 67

Setting Input Function Both the HP E1533 Digital I/O SCP and HP E1534 Frequency/Totalizer
SCP can input static digital states. The HP E1534 Frequency/Totalizer SCP
can also input Frequency measurements and Totalize the occurrence of
positive or negative digital signal edges.

Static State (CONDition) Function

To configure digital channels to input static states, use the
[SENSe:]FUNCtion:CONDition (@<ch_list>) command. Examples:

To set the lower 8 bit channel of an HP E1533 in SCP position 4 to input

SENS:FUNC:COND (@132)
To set the upper 4 channels (bits) of an HP E1534 in SCP pos 5 to input states

SENS:FUNC:COND (@144:147)

Frequency Function

The frequency function uses two commands. For more on this HP E1534
capability see the SCP’s User’s Manual.

To set the frequency counting gate time execute:

[SENSe:]FREQuency:APERature <gate_time>,(@<ch_list>)

Sets the digital channel function to frequency

[SENSe:]FUNCtion:FREQuency (@<ch_list>)

Totalizer Function

The totalizer function uses two commands also. One sets the channel
function, and the other sets the condition that will reset the totalizer count to
zero. For more on this HP E1534 capability see the SCP’s User’s Manual.

To set the HP E1534’s totalize reset mode

[SENSe:]TOTalize:RESet:MODE INIT | TRIG,(@<ch_list>)

To configure HP E1534 channels to the totalizer function

[SENSe:]FUNCtion:TOTalize (@<ch_list>)

Setting up Digital
Outputs

Digital outputs can be configured for polarity, output drive type, and
depending on the SCP model, a selection of output functions as well. The
following discussion will explain which functions are available with a
particular Digital I/O SCP model. Setting a digital channel’s output function
is what defines it as an output channel.

68 Programming the HP E1419A Chapter 3

Setting Output Polarity To specify the output polarity (logical sense) for digital channels use the
command OUTPut:POLarity <mode>,(@<ch_list>). This capability is
available on all digital SCP models. This setting is valid even while the
specified channel in not an output channel. If and when the channel is
configured for output (an output FUNCtion command), the setting will be in
effect.

• The <mode> paramter can be either NORMal or INVerted. When set
to NORM, an output channel set to logic 0 will output a TTL
compatible low. When set to INV, an output channel set to logic 0
will output a TTL compatible high.

• The <ch_list> parameter specifies the channels to configure. The
HP E1533 has 2 channels of 8 bits each. All 8 bits in a channel take
on the configuration specified for the channel. The HP E1534 has 8
I/O bits that are individually configured as channels.

To configure the higher 8 bit channel of an HP E1533 for inverted polarity:

OUTP:POLARITY INV,(@133) SCP in SCP position 4

To configure the upper 4 bits of an HP E1534 for inverted polarity:

OUTP:POL INV,(@136:139) SCP in SCP position 4

Setting Output
Drive Type

The HP E1533 and HP E1534 use output drivers that can be configured as
either active or passive pull-up. To configure this, use the command
OUTPut:TYPE <mode>,(@<ch_list>). This setting is valid even while the
specified channel in not an output channel. If and when the channel is
configured for output (an output FUNCtion command), the setting will be in
effect.

• The <mode> parameter can be either ACTive or PASSive. When set
to ACT (the default), the output provides active pull-up. When set to
PASS, the output is pulled up by a resistor.

• The <ch_list> parameter specifies the channels to configure. The
HP E1533 has 2 channels of 8 bits each. All 8 bits in a channel take
on the configuration specified for the channel. The HP E1534 has 8
I/O bits that are individually configured as channels.

To configure the higher 8 bit channel of an HP E1533 for passive pull-up:

OUTP:TYPE PASS,(@156) SCP in SCP position 7

To configure the upper 4 bits of an HP E1534 for active pull-up:

OUTP:TYPE ACT,(@148:155) SCP in SCP position 6

Setting Output
Functions

Both the HP E1533 Digital I/O SCP, and HP E1534 Frequency/Totalizer
SCP can output static digital states. The HP E1534 Frequency/Totalizer SCP
can also output single pulses per trigger, continuous pluses that are width

Chapter 3 Programming the HP E1419A 69

modulated (PWM, and continuous pulses that are frequency
modulated (FM).

Static State (CONDition) Function

To configure digital channels to output static states, use the
SOURce:FUNCtion:CONDition (@<ch_list>) command. Examples:

To set the upper 8 bit channel of an HP E1533 in SCP position 7 to output

SOUR:FUNC:COND (@157)
To set the lower 4 channels (bits) of an HP E1534 in SCP pos 6 to output states

SOUR:FUNC:COND (@156:159)

Variable Width Pulse Per Trigger

This function sets up one or more HP E1534 channels to output a single
pulse per trigger (per algorithm execution). The width of the pulse from
these channels is controlled by Algorithm Language statements. Use the
command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>). Example
command sequence:

To set HP E1534 channel 2 at SCP position 6 to output a pulse per trigger

SOUR:FUNC:PULSE (@149)
Example algorithm statement to control pulse width to 1 msec

O149 = 0.001

Variable Width Pulses at Fixed Frequency (PWM)

This function sets up one or more HP E1534 channels to output a train of
pulses. A companion command sets the period for the complete pulse
(rising edge to rising edge). This of course fixes the frequency of the pulse
train. The width of the pulses from these channels is controlled by
Algorithm Language statements.

Use the command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>).
Example command sequence:

70 Programming the HP E1419A Chapter 3

To enable pulse width modulation for HP E1534’s third channel at SCP
position 6

SOUR:PULM:STATE ON,(@150)
To set pulse period to 0.5 msec (which sets the signal frequency 2 KHz)

SOUR:PULSE:PERIOD 0.5e-3,(@150)
To set function of HP E1534’s third channel in SCP position 6 to PULSE

SOUR:FUNCTION:PULSE (@150)
Example algorithm statement to control pulse width to .1 msec (20% duty-cycle)

O150 = 0.1e-3;

Fixed Width Pulses at Variable Frequency (FM)

This function sets up one or more HP E1534 channels to output a train of
pulses. A companion command sets the width (↑ edge to ↓ edge) of the
pulses. The frequency of the pulse train from these channels is controlled by
Algorithm Language statements.

Use the command SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>).
Example command sequence:

To enable frequency modulation for HP E1534’s fourth channel at SCP
position 6

SOUR:FM:STATE ON,(@151)
To set pulse width to 0.3333 msec

SOUR:PULSE:WIDTH 0.3333e-3,(@151)
To set function of HP E1534’s fourth channel in SCP position 6 to PULSE

SOUR:FUNCTION:PULSE (@151)
Example algorithm statement to control frequency to 1000 Hz

O151 = 1000;

Variable Frequency Square-Wave Output (FM)

To set function of HP E1534’s fifth channel in SCP position 6 to output a
variable frequency square-wave.

SOUR:FUNCTION:SQUare (@152)

Example Algorithm Language statement to set output to 20KHz

O152 = 20e3;

For complete HP E1534 capabilities, see the SCP’s User’s Manual.

Chapter 3 Programming the HP E1419A 71

Performing Channel Calibration (Important!)

The *CAL? (also performed using CAL:SETup then CAL:SETup?) is a
very important step. *CAL? generates calibration correction constants for
all analog input and output channels. *CAL? must be performed in order for
the HP E1419A to deliver its specified accuracy. Wait for the module to
thoroughly warm-up (1 hour) before you execute *CAL?. See the guidlines
and notes on the following page.

The "Front Panel" example program shown in Chapter 5 provides a
calibration function that executes *CAL? and also performs the
CAL:STORE ADC command to store the results of the calibration to the
HP E1419A’s non-volatile Flash memory. "cal_1419.vee" can be merged
into your HP VEE application to perform the calibration function.

Operation and
Restrictions

 *CAL? generates calibration correction constants for each analog input
channel for offset and gain at all 5 A/D range settings. For programmable
input SCPs, these calibration constants are only valid for the current
configuration (gain, and filter cut-off frequency). This means that *CAL?
calibration is no longer valid if you change channel gain or filter settings
(INP:FILT or INP:GAIN), but is still valid for changes of channel function
or range (using SENS:FUNC ...). The calibration becomes invalid if you
move these SCPs to different SCP locations.

For analog output channels (both measurement excitation SCPs as well as
control output SCPs) *CAL? also generates calibration correction constants.
These calibration constants are valid only for the specific SCPs in the
positions they are currently in. The calibration becomes invalid if you move
these SCPs to different SCP locations.

How to Use *CAL? When you turn power on to the HP E1419A after you have first installed
your SCPs (or after you have moved SCPs), the module will use
approximate values for calibration constants. This means that input and
output channels will function although the values will not be very accurate
relative to the HP E1419A’s specified capability. At this point, make sure
the module is firmly anchored to the mainframe (front panel screws are
tight), and let it warm up for a full hour. After it has warmed up, execute
*CAL?.

What *CAL? Does The *CAL? command causes the module to calibrate A/D offset and gain,
and all channel offsets. This may take many minutes to complete. The actual
time it will take your HP E1419A to complete *CAL? depends on the mix
of SCPs installed. *CAL? performs literally hundreds of measurements of
the internal calibration sources for each channel and must allow 17 time
constants of settling wait each time a filtered channel’s calibration source
changes value. The *CAL? procedure is internally very sophisticated and
results in an extremely well calibrated module.

72 Programming the HP E1419A Chapter 3

When *CAL? finishes, it returns a +0 value to indicate success. The
generated calibration constants are now in volatile memory as they always
are when ready to use. If the configuration just calibrated is to be fairly
long-term, you should now execute the CAL:STORE ADC command to
store these constants in non-volatile memory. That way the module can
restore calibration constants for this configuration in case of a power failure.
After power returns, and after the module warms up, these constants will be
relatively accurate.

When to Execute *CAL? • After a 1 hour warm-up from the time you turn on your mainframe if
it has been off for more than a few minutes.

• When you change the channel gain and/or filter cut-off frequency on
programmable SCPs (using INPut:GAIN, or INPut:FILTer ...)

• When you change output current amplitude on the HP E1505 or
HP E1518 SCPs.

• When you re-configure SCPs to different locations. This is true even
if you replace an SCP with an identical model SCP because the
calibration constants are specific to each SCP channel’s individual
performance.

• When the ambient temperature within the mainframe changes
significantly. Temperature changes affect accuracy much more than
long-term component drift. See temperature coefficients in
Appendix A "Specifications".

Notes 1. To save time when performing channel calibration on multiple HP
E1419As in the same mainframe, use the CAL:SETup and
CAL:SETup? commands (see Chapter 6 for details).

2. You do not have to execute *CAL? or CAL:SETup each time you
run your algorithms. See "When to Execute *CAL?" above for
guidlines.

Chapter 3 Programming the HP E1419A 73

Defining C Language Algorithms

This section is an overview of how to write and download C algorithms into
the E1419’s memory. The assumption is that you have some programming
experience in C, but since the E1419’s version of C is limited, just about any
experience with a programming language will suffice. See Chapter 4 for a
complete description of the E1419’s C language and functionality.

Arithmetic Operators: add +, subtract -, multiply *, divide /
Assignment Operator: =
Comparison Functions: less than <, less than or equal <=, greater than
>, greater than or equal >=, equal to ==, not equal to !=
Boolean Functions: and &&, or ||, not !
Variables: scalars of type static float, and single dimensioned
arrays of type static float limited to 1024 elements.
Constants:
32-bit decimal integer; Dddd... where D and d are decimal digits but D is
not zero. No decimal point or exponent specified.
32-bit octal integer; 0oo... where 0 is a leading zero and o is an octal
digit. No decimal point or exponent specified.
32-bit hexadecimal integer; 0Xhhh... or 0xhhh... where h is a hex
digit.
32-bit floating point; ddd., ddd.ddd, ddde±dd, dddE±dd,
ddd.dddedd, or ddd.dddEdd where d is a decimal digit.
Flow Control: conditional construct if(){ } else { }
Intrinsic Functions:
Return the absolute value; abs(<expr>)
Return minimum; min(<expr1>,<expr2>)
Return maximum; max(<expr1>,<expr2>)
User defined function; <user_name>(<expr>)
Write value to CVT element; writecvt(<expr>,<expr>)
Write value to FIFO buffer; writefifo(<expr>)
Write value to both CVT and FIFO; writeboth(<expr>,<expr>)

Global variable
definition

Global variables are necessary when you need to communicate information
from one algorithm to another. Globals are initialized to 0 unless
specifically assigned a value at define time. The initial value is only valid at
the time of definition. That is, globals remain around and may be altered by
other SCPI commands or algorithms. Globals are removed only by
power-ON or *RST. The following string output is valid for strings of 256
characters or less.

ALG:DEF ’globals’,’static float output_max = 1, coefficients[10];’

If the global definition exceeds 256 characters, you need to download an
indefinite block header, the definitions, and terminated by a LF/EOI
sequence:

74 Programming the HP E1419A Chapter 3

ALG:DEF ’globals’,#0static float output_max = 1, LF/EOI

The LF/EOI sequence is part of the I/O and Instrument Manager in HP
VEE. You must edit the E1419 I/O device for direct I/O and purposely
select EOI to be sent with the EOL terminator.

Algorithm definition Algorithms are similar in nature to global definitions. Both scalars and
arrays can be defined for local use by the algorithm. If less than 256
characters, you need only place the algorithm code within string quotes:

ALG:DEF ’alg1’,’static float a = 1; if (I100 > a) writecvt(I100,10);’

If the algorithm exceeds 256 characters, you need to download an indefinite
block header, the algorithm code, and terminated by a LF/EOI sequence:

 ALG:DEF ’alg2’,#0static float a = 1; ... ;LF/EOI

Algorithms remain around and cannot be altered once defined unless you
specify a fixed size for the algorithm(see Chapter 4). Algorithms are
removed from memory only by issueing a *RST or power-ON condition.

HP VEE text boxes are the best tool for storing the algorithm code and will
be used extensively by this manual. See the "temp1419.vee" example
program in Chapter 5 illustrates downloading algorithms to the HP E1419A.

Pre-setting
Algorithm Variables

As you may have noticed in the examples above, you can initialize a
variable to a particular value. However, that value is a one-time
initialization. Later program execution may alter the variable, and
re-issueing an INIT command to re-start program execution will NOT
re-initialize that variable. Instead, you can alter any scalar or array using
SCPI commands prior to issueing the INIT command, or you can rely upon
the intrinsic variable First_loop to conditionally preset variables after
receiving the INIT command. First_loop is a variable that is preset to
non-zero due to the execution of the INIT command. With the occurrence of
the first scan trigger and when algorithms execute for the first time,
First_loop’s value will be non-zero. Subsequent triggers will find this
variable cleared. Here’s an example of how First_loop can be used:

ALG:DEF ’alg1’,#0static float a,b,c, start, some_array[4]; if (First_loop)
{ a = 1; b = 2; c = 3; } * * LF/EOI

To pre-set variables under program control before issueing the INIT
command, the ALG:SCALAR and ALG:ARRAY commands can be used.
Assume the example algorithm above has already been defined. To preset
the scalar start and the array some_array, you can use the following
commands:

Chapter 3 Programming the HP E1419A 75

ALG:SCAL ’alg1’,’start’,1.2345

ALG:ARR ’alg1’,’some_array’,#232..........LF/EOI

ALG:UPD

The ALG:SCAL command designates the name of the algorithm of where
to find the local variable start and assigns that variable the value of 1.2345.
Likewise, the ALG:ARRAY command designates the name of the
algorithm, the name of the local array, and a definite length block for
assigning the four real number values. As you can see, the scalar assignment
uses ASCII and the array assignment uses binary. The later makes for a
much faster transfer especially for large arrays. The format used is
IEEE-754 8-byte binary real numbers. The header is #232 which states "the
next 2 bytes are to be used to specify how many bytes are comming". In this
case, 32 bytes represent the four 8-byte elements of the array. A 100
element array would have a header of #3800. If you wanted to pre-initialize
a global scalar or array, the word ’globals’ must be used instead of the
algorithm name. The name simply specifies the memory space of where to
find those elements.

As stated earlier in the chapter, all updates (changes) are held in a holding
buffer until the computer issues the update command. The ALG:UPD is
that command. Executing ALG:UPD before INIT does not make much
difference since there is no concern as to how long it takes or how it is
implemented. After INIT forces the buffered changes to all take place
during the next Update Phase in the trigger cycle after reception of the
ALG:UPD command..

Defining Data Storage

Specifying the
Data Format

The format of the values stored in the FIFO buffer and CVT never changes.
They are always stored as IEEE 32-bit Floating point numbers. The
FORMat <format>[,<length>] command merely specifies whether and how
the values will be converted as they are transferred from the CVT and FIFO
to the host computer.

• The <format>[,<length>] parameters can specify:

PACKED Same as REAL,64 except for the values of
IEEE -INF, IEEE +INF, and Not-a-Number (NaN).
See FORMat command in Chapter 5 for details.

REAL,32 means real 32-bit (no conversion, fastest)
REAL same as above
REAL,64 means real 64-bit (values converted)
ASCii,7 means 7-bit ASCII (values converted)
ASCii same as above (the *RST condition)

76 Programming the HP E1419A Chapter 3

To specify that values are to remain in IEEE 32-bit Floating Point format for
fastest transfer rate:

FORMAT REAL,32

To specify that values are to be converted to 7-bit ASCII and returned as a
15 character per value comma separated list:

FORMAT ASC,7 The *RST, *TST? and power-on
default format

or

FORM ASC same operation as above

Turning Off IEEE +/-INF
and NaN Values

The E1419 stores data in its FIFO and CVT in a data format adhering to the
IEEE-754. This format yields +/-INF and NaN numbers for those values
that indicate an out-of-bound condition(overange reading) or some
uninitialized number(CVT element has not been written), respectively.
Normal data queries for HP VEE do not permit these numbers to go
unnoticed during a transaction. HP VEE wants to make sure you deal with
valid numbers to avoid making calculations that can eventually cause errors.
Therefore, any transaction that involves these numbers will cause an error in
HP VEE and will abort the transaction.

To avoid this condition, the E1419 SCPI command DIAG:IEEE OFF can be
issued to the E1419 to force it to never output +/-INF or NaN. The default
power-ON or *RST condition is DIAG:IEEE ON, so you will have to
explicitly send this command to avoid the condition. Keep in mind that this
condition ONLY occurs when selecting the FORM REAL command.
FORM PACKED is another way to avoid the numbers, but that is limited to
the 8-byte data format. For speed, you will want to use FORM REAL,32
which is only four bytes for each element.

HP VEE 4.0 does include in its Main Properties the ability to detect the
inifinity numbers generated by IEEE-754 and to force 9.9E37 numbers, but
it will be more efficient to let the E1419 keep from generating the IEEE-754
numbers.

Selecting the
FIFO Mode

The HP E1419A’s FIFO can operate in two modes. One mode is for reading
FIFO values while algorithms are executing, the other mode is for reading
FIFO values after algorithms have been halted (ABORT sent).

• BLOCking; The BLOCking mode is the default and is used to read
the FIFO while algorithms are executing. Your application program
must read FIFO values often enough to keep it from overflowing (see
"Continuously Reading the FIFO" on page 3-84). The FIFO stops
accepting values when it becomes full (65,024 values). Values sent
by algorithms after the FIFO is full are discarded. The first value to
exceed 65,024 sets the STAT:QUES:COND? bit 10 (FIFO

Chapter 3 Programming the HP E1419A 77

Overflowed), and an error message is put in Error Queue (read with
SYS:ERR? command).

• Overwrite; When the FIFO fills, the oldest values in the FIFO are
overwritten by the newest values. Only the latest 65,024 values are
available. In OVERwrite mode the module must be halted (ABORT
sent) before reading the FIFO (see "Reading the Latest FIFO Values"
on page 3-86). This mode is very useful when you want to view an
algorithm’s response to a disturbance.

To set the FIFO mode (blocking is the *RST/Power-on condition):

[SENSe:]DATA:FIFO:MODE OVERWRITE select overwrite mode

[SENSe:]DATA:FIFO:MODE BLOCK select blocking mode

Setting up the Trigger System

Arm and Trigger
Sources

Figure 3-7 shows the trigger and arm model for the HP E1419A. Note that
when the Trigger Source selected is TIMer(the default), the remaining
sources become Arm Sources. Using ARM:SOUR allows you to specify an
event that must occur in order to start the Trigger Timer. The default
Arm source is IMMediate (always armed).

Selecting the
Trigger Source

In order to start an algorithm execution cycle, a trigger event must occur.
The source of this event is selected with the TRIGger:SOURce <source>
command. The following table explains the possible choices for <source>.

Figure 3-7 Logical Arm and Trigger Model

78 Programming the HP E1419A Chapter 3

Parameter Value Source of Trigger (after INITiate:… command)

BUS TRIGger[:IMMediate], *TRG, GET (for HP-IB)

EXTernal “TRG” signal input on terminal module

HOLD TRIGger[:IMMediate]

IMMediate The trigger signal is always true (scan starts when an
INITiate:… command is received).

SCP SCP Trigger Bus (future HP or SCP Breadboard)

TIMer The internal trigger interval timer (must set Arm source)

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)

NOTES 1. When TRIGger:SOURce is not TIMer, ARM:SOURce must be set to
IMMediate (the *RST condition). If not, the INIT command will
generate an error -221,"Settings conflict".

2. When TRIGger:SOURce is TIMer, the trigger timer interval
(TRIG:TIM <interval>) must allow enough time to scan all channels,
execute all algorithms and update all outputs or a +3012, "Trigger
Too Fast" error will be generated during the algorithm cycle. See
the TRIG:TIM command on page 6-314 for details.

To set the trigger source to the internal Trigger Timer (the default):

TRIG:SOUR TIMER now select ARM:SOUR

To set the trigger source to the External Trigger input connection:

TRIG:SOUR EXT an external trigger signal

To set the trigger source to a VXIbus TTLTRG line:

TRIG:SOUR TTLTRG1 the TTLTRG1 trigger line

Selecting Trigger
Timer Arm Source

Figure 3-7 shows that when the TRIG:SOUR is TIMer, the other trigger
sources become Arm sources that control when the timer will start. The
command to select the arm source is ARM:SOURce <source>.

• The <source> parameter choices are explained in the following table

Chapter 3 Programming the HP E1419A 79

Parameter Value Source of Arm (after INITiate:… command)

BUS ARM[:IMMediate]

EXTernal “TRG” signal input on terminal module

HOLD ARM[:IMMediate]

IMMediate The arm signal is always true (scan starts when an
INITiate:… command is received).

SCP SCP Trigger Bus (future HP or SCP Breadboard)

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)

NOTE When TRIGger:SOURce is not TIMer, ARM:SOURce must be set to
IMMediate (the *RST condition). If not, the INIT command will generate
an error -221,"Settings conflict".

To set the external trigger signal as the arm source:

ARM:SOUR EXT trigger input on connector
module

Programming the
Trigger Timer

When the HP E1419A is triggered, it begins its algorithm execution cycle.
The time it takes to complete a cycle is the minimum interval setting for the
Trigger Timer. If programmed to a shorter time, the module will generate a
"Trigger too fast" error. So, how can you determine this minimum time?
After you have defined all of your algorithms, you send the ALG:TIME?
command with its <alg_name> parameter set to ’MAIN’. This causes the
HP E1419A’s driver to analyze the time required for all four phases of the
execution cycle; Input, Update, Execute Algorithm, and Output. The value
returned from ALG:TIME? ’MAIN’ is the minimum allowable Trigger
Timer interval. With this information you now execute the command
TRIGger:TIMer <interval> and set <interval> to the desired time that is
equal to or greater than the minimum.

Setting the Trigger
Counter

The Trigger Counter controls how many trigger events will be allowed to
start an input-calculate-output cycle. When the number of trigger events set
with the TRIGger:COUNt command is reached, the module returns to the
Trigger Idle State (needs to be INITiated again). The default Trigger Count
is 0 which is the same as INF (can be triggered an unlimited number of
times). This setting will be used most often because it allows un-interrupted
execution of control algorithms.

To set the trigger count to 50 (perhaps to help debug an algorithm):

TRIG:COUNT 50 execute algorithms 50 times then
return to Trig Idle State.

80 Programming the HP E1419A Chapter 3

Outputting Trigger
Signals

The HP E1419A can output trigger signals on any of the VXIbus TTLTRG
lines. Use the OUTPut:TTLTrg<n>[:STATe] ON | OFF command to select
one of the TTLTRG lines and then choose the source that will drive the
TTLTRG line with the command OUTPut:TTLTrg:SOURce command. For
details see OUTP:TTLTRG commands starting on page 6-254

To output a signal on the TTLTRG1 line each time the Trigger Timer cycles
execute the commands:

TRIG:SOUR TIMER select trig timer as trig source

OUTP:TTLTRG1 ON select and enable TTLTRG1 line

OUTP:TTLTRG:SOUR TRIG each trigger output on TTLTRG1

INITiating/Running Algorithms

When the INITiate[:IMMediate] command is sent, the HP E1419A builds
the input Scan List from the input channels you referenced when you
defined the algorithm with the ALG:DEF command above. The module also
enters the Waiting For Trigger State (see Figure 3-3). In this state, all that is
required to run the algorithm is a trigger event for each pass through the
input-calculate-output cycle. To initiate the module, send the command:

INIT module to Waiting for Trigger
State

When an INIT command is executed, the driver checks several interrelated
settings programmed in the previous steps. If there are conflicts in these
settings an error message is placed in the Error Queue (read with the
SYST:ERR? command). Some examples:

• If TRIG:SOUR is not TIMer then ARM:SOUR must be IMMediate.

• The time it would take to execute all algorithms is longer than the
TRIG:TIMER interval currently set.

Starting Algorithms Once the module is INITiated it can accept triggers from any source
specified in TRIG:SOUR.

TRIG:SOUR TIMER (*RST default)

ARM:SOUR IMM (*RST default)

INIT INIT starts Timer triggers

or

TRIG:SOUR TIMER

ARM:SOUR HOLD

INIT INIT readies module

ARM ARM starts Timer triggers.

Chapter 3 Programming the HP E1419A 81

... and the algorithms start to execute.

The Operating
Sequence

The HP E1419A has four major operating phases. Figure 3-8 shows these
phases. A trigger event starts the sequence:

1. (INPUT); the state of all digital inputs are captured and each analog
input channel that is linked to an algorithm variable is scanned.

2. (UPDATE); The update phase is a window of time made large
enough to process all variables and algorithm changes made after
INIT. Its width is specified by ALG:UPDATE:WINDOW. This
window is the only time variables and algorithms can be changed.
Variable and algorithm changes can actually be accepted during other
phases, but the changes don’t take place until an ALG:UPDATE
command is received and the update phase begins. If no
ALG:UPDATE command is pending, the update phase is simply
used to accept variable and algorithm changes from the application
program (using ALG:SCAL, ALG:ARR, ALG:DEF). Data acquired
by external specialized measurement instruments can be sent to your
algorithms at this time.

3. (EXECUTE ALGS); all INPUT and UPDATE values have been
made available to the algorithm variables and each enabled algorithm
is executed. The results to be output from algorithms are stored in the
Output Channel Buffer.

4. (OUTPUT); each Output Channel Buffer value stored during
(EXECUTE ALGS) is sent to its assigned SCP channel. The start of
the OUTPUT phase relative to the Scan Trigger can be set with the
SCPI command ALG:OUTP:DELay.

Figure 3-8 Sequence of Loop Operations

82 Programming the HP E1419A Chapter 3

Retrieving Algorithm Data

The most efficient means of acquiring data from the E1419 is to have its
algorithms store real-number results in the FIFO or CVT. The algorithms
use the writefifo(), writecvt(), and writeboth() intrinsic functions to perform
this operation as seen in Figure 3-9.

Note that the first 10 elements of the CVT are unavailable. These are used
by the driver for internal data retrieval. However, all algorithms have
access to the remaining 502 elements. Data is retrieved from the CVT with:

DATA:CVT? (@10,12,14:67)

The format of data comming from the CVT is determined by the FORMat
command.

Figure 3-9 Writing Algorithm Data to FIFO and CVT

Chapter 3 Programming the HP E1419A 83

The FIFO can store up to 65024 real numbers. Each writefifo() or
writeboth() cause that expression to be placed into the FIFO. With a FIFO
this large, you can store many seconds worth of data, dependent upon the
volume of writes and the trigger cycle time. The FIFO’s most valuable
service is to keep your computer from having to spend too much time
acquiring data from the E1419. This is ideal for HP VEE which has many
other operator interactions and analysis to perform. HP VEE can quickly
read the buffered data when required. Data is retrieved from the FIFO with:

 DATA:FIFO:PART? <count>

<count> can be a number larger than the FIFO(up to 2.1 billion) if you want
to read data continuously with HP VEE READ transactions. And, you can
query how much data is in the FIFO with the DATA:FIFO:COUNT?
command.

Read Variables Directly To directly read algorithm variables that are not stored in the FIFO or CVT,
you only need specify the memory space(algorithm name or globals) and the
name of the variable. To read the values of scalar variables or single array
elements, you use the command ALG:SCALar?. To read an entire array,
you use ALG:ARRay? The former returns data in ASCII, and the later
returns data in REAL,64(8-byte IEEE-754 format). This coincides with the
ALG:SCAL and ALG:ARR commands form writing data to these variables.
Here are some examples:

ALG:SCAL? ’globals’,’my_var’

ALG:SCAL? ’alg1’,’my_array[6]’

ALG:ARR? ’alg2’,’my_other_array’

The ALG:ARR? response data will consist of a block header and real-64
data bytes. For example, if my_other_array was 10 elements, the block
header would be #280 which says there are two bytes of count that specify
80 bytes of data to follow. Data from the E1419 is terminated with the
HP-IB EOI signal.

Which FIFO Mode? The way you will read the FIFO depends on how the FIFO mode was set in
the programming step "Setting the FIFO Mode" on page 3-77.

Continuously Reading the FIFO (FIFO mode BLOCK)

If you are going to read the FIFO while algorithms are running, you must set
the FIFO mode to SENS:DATA:FIFO:MODE BLOCK. In this mode if the
FIFO fills up, it stops accepting values from algorithms. The algorithms
continue to execute, but the latest data is lost. To avoid losing any FIFO
data, your application needs to read the FIFO often enough to keep it from
overflowing. Here’s a flow diagram to show you where and when to use the
FIFO commands.

84 Programming the HP E1419A Chapter 3

Here’s an example command sequence for Figure 3-10. It assumes that the
FIFO mode was set to BLOCK and that at least one algorithm is sending
values to the FIFO.

following loop reads number of values in FIFO while algorithms executing

loop while "measuring" bit is true see STAT:OPER:COND bit 4

SENS:DATA:FIFO:COUNT? query for count of values in FIFO

input n_values here

if n_values >= 16384 Set minimum block size you want
to transfer

SENS:DATA:FIFO:PART? n_values ask for n_values

input read_data here Format depends on FORMat cmd

end if

end while loop

following checks for values remaining in FIFO after "measuring" false

SENS:DATA:FIFO:COUNT? query for values still in FIFO

input n_values here

if n_values if any values...

SENS:DATA:FIFO:PART? n_values

input read_data here get remaining values from FIFO

end if

Figure 3-10 Controlling Reading Count

Chapter 3 Programming the HP E1419A 85

Reading the Latest FIFO Values (FIFO mode OVER)

In this mode the FIFO always contains the latest values (up to the FIFO’s
capacity of 65,024 values) from running algorithms. In order to read these
values the algorithms must be stopped (use ABORT).This forms a record of
the algorithm’s latest performance. In the OVERwrite mode, the FIFO must
not be read while it is accepting data from algorithms. Algorithm execution
must be stopped before your application program reads the FIFO.

Here is an example command sequence you can use to read values from the
FIFO after algorithms are stopped (ABORT sent).

SENS:DATA:FIFO:COUNT? query count of values in FIFO

input n_values here

if n_values if any values...

SENS:DATA:FIFO:PART? n_values Format of values set by FORMat

input read_data here get remaining values from FIFO

end of if

Modifying Running Algorithm Variables

Updating the
Algorithm Variables

and Coefficients

The values sent with the ALG:SCALAR command are kept in the Update
Queue until an ALGorithm:UPDate command is received.

ALG:UPD cause changes to take place

Updates are performed during phase 2 of the algorithm execution cycle (see
figure 3-8 on page 3-82). The UPDate:WINDow <num_updates> command
can be used to specify how many updates you need to perform during phase
2 (UPDATE phase) and assigns a constant window of time to accomplish all
of the updates you will make. The default value for <num_updates> is 20.
Fewer updates (shorter window) means slightly faster loop execution times.
Each update takes approximately 1.4 µseconds.

To set the Update Window to allow 10 updates in phase 2:

ALG:UPD:WIND 10 allows slightly faster execution
than default of 20 updates

A way to synchronize variable updates with an external event is to send the
ALGorithm:UPDate:CHANnel ’<dig_chan/bit>’ command.

• The <dig_chan/bit> parameter specifies the digital channel/bit that
controls execution of the update operation.

86 Programming the HP E1419A Chapter 3

When the ALG:UPD:CHAN command is received, the module checks the
current state of the digital bit. When the bit next changes state, pending
updates are made in the next UPDATE Phase.

ALG:UPD:CHAN ’I133.B0’ perform updates when bit zero of
HP E1533 at channel 133
changes state

Enabling and
Disabling

Algorithms

An algorithm is enabled by default when it is defined. However, the
ALG:STATe <alg_name>, ON | OFF command is provided to allows you to
enable or disable algorithms. When an individual algorithm is enabled, it
will execute when the module is triggered. When disabled, the algorithm
will not execute.

NOTE The command ALG:STATE <alg_name>, ON | OFF does not take effect
until an ALG:UPDATE command is received. This allows you to send
multiple ALG:STATE commands and then synchronize their effect.

To enable ALG1 and ALG2, and disable ALG3 and ALG4:

ALG:STATE ’ALG1’,ON enable algorithm ALG1

ALG:STATE ’ALG2’,ON enable algorithm ALG2

ALG:STATE ’ALG3’,OFF disable algorithm ALG3

ALG:STATE ’ALG4’,OFF disable algorithm ALG4

ALG:UPDATE changes take effect at next update
phase

Chapter 3 Programming the HP E1419A 87

Setting Algorithm
Execution

Frequency

The ALGorithm:SCAN:RATio ’<alg_name>’,<num_trigs> command sets
the number of trigger events that must occur before the next execution of
algorithm <alg_name>. If you wanted ’ALG3’ to execute only every 20
triggers, you would send ALG:SCAN:RATIO ’ALG3’,20, followed by an
ALG:UPDATE command. ’ALG3’ would then execute on the first trigger
after INIT, then the 21st, then the 41st, etc. This can be useful to adjust the
response time of one algorithm relative to others. The *RST default for all
algorithms is to execute on every trigger event.

Example Command Sequence

This example command sequence puts together all of the steps discussed so
far in this chapter.

*RST Reset the module

Setting up Signal Conditioning (only for programmable SCPs in pos 4-7)

INPUT:FILTER:FREQUENCY 2,(@140:143)

INPUT:GAIN 64,(@140:143)

INPUT:GAIN 8,(@144:147)

set up digital channel characteristics

INPUT:POLARITY NORM,(@156) (*RST default)

OUTPUT:POLARITY NORM,(@157) (*RST default)

OUTPUT:TYPE ACTIVE,(@157)
link channels to EU conversions (measurement functions)

SENSE:FUNCTION:VOLTAGE AUTO,(@100:107) (*RST default)

SENSE:REFERENCE THER,5000,AUTO,(@108)

SENSE:FUNCTION:TEMPERATURE TC,T,AUTO,(@109:123)

SENSE:REFERENCE:CHANNELS (@108),(@109:123)

configure digital output channel for "alarm channel"

SOURCE:FUNCTION:CONDITION (@157)
execute channel calibration

*CAL? can take several minutes

Configure the Trigger System

ARM:SOURCE IMMEDIATE (*RST default)

TRIGGER:COUNT INF (*RST default)

TRIGGER:TIMER .010 (*RST default)

TRIGGER:SOURCE TIMER (*RST default)

specify data format

FORMAT ASC,7 (*RST default)

select FIFO mode

SENSE:DATA:FIFO:MODE BLOCK may read FIFO while running

88 Programming the HP E1419A Chapter 3

Define algorithm

ALG:DEFINE ’ALG1’,’static float a,b,c, div, mult, sub;

if (First_loop)

{

 a = 1; b = 2; c = 3;

writecvt(a, 10); writefifo(b, 11); writefifo(c, 12);

}

writecvt(a / div, 13);

writecvt(b * mult, 14);

writecvt(c - sub, 15);’
Pre-set coefficients

ALG:SCAL ’ALG1’,’div’,5

ALG:SCAL ’ALG1’,’mult’,5

ALG:SCAL ’ALG1’,’sub’,0

ALG:UPDATE
initiate trigger system (start algorithm)

INITIATE

retrieve data

SENSE:DATA:CVT? (@10:15)

Chapter 3 Programming the HP E1419A 89

Using the Status System

The HP E1419A’s Status System allows you to quickly poll a single register
(the Status Byte) to see if any internal condition needs attention. Figure 3-11
shows that the three Status Groups (Operation Status, Questionable Data,
and the Standard Event Groups) and the Output Queue all send summary
information to the Status Byte. By this method the Status Byte can report
many more events than its eight bits would otherwise allow. Figure 3-12
shows the Status System in detail.

Figure 3-11 Simplified Status System Diagram

90 Programming the HP E1419A Chapter 3

Figure 3-12 HP E1419 Status System

Chapter 3 Programming the HP E1419A 91

Status Bit Descriptions

Questionable Data Group

Bit Bit Value Event Name Description

8 256 Lost Calibration At *RST or Power-on Control Processor has found a checksum
error in the Calibration Constants. Read error(s) with
SYST:ERR? command and re-calibrate areas that lost constants.

9 512 Trigger Too Fast Scan not complete when another trigger event received.

10 1024 FIFO Overflowed Attempt to store more than 65,024 values in FIFO.

11 2048 Overvoltage
(Detected on

Input)

If the input protection jumper has not been cut, the input relays
have been opened and *RST is required to reset the module.
Overvoltage will also generate an error.

12 4096 VME Memory
Overflow

The number of values taken exceeds VME memory space.

13 8192 Setup Changed Channel Calibration in doubt because SCP setup may have
changed since last *CAL? or CAL:SETup command. (*RST
always sets this bit.)

Operation Status Group

Bit Bit Value Event Name Description

0 1 Calibrating Set by CAL:TARE, and CAL:SETup. Cleared by CAL:TARE?, and
CAL:SETup?. Set while *CAL? executing, then cleared.

4 16 Measuring Set when instrument INITiated. Cleared when instrument returns to
Trigger Idle State.

8 256 Scan Complete Set when each pass through a Scan List is completed

9 512 SCP Trigger Reserved for future HP SCPs

10 1024 FIFO Half Full FIFO contains at least 32,768 values

11 2048 Algorithm Interrupt The interrupt() function was called in an executing algorithm

Standard Event Group

Bit Bit Value Event Name Description

0 1 Operation Complete *OPC command executed and instrument has completed all
pending operations.

1 2 Request Control Not used by HP E1419A

2 4 Query Error Attempting to read empty output queue or output data lost.

3 8 Device Dependent
Error

A device dependent error occurred. See Appendix B.

4 16 Execution Error Parameter out of range, or instrument cannot execute a proper
command because it would conflict with another instrument setting.

5 32 Command Error Unrecognized command or improper parameter count or type.

6 64 User Request Not used by HP E1419A

7 128 Power-On Power has been applied to the instrument

92 Programming the HP E1419A Chapter 3

Enabling Events to
be Reported in the

Status Byte

There are two sets of registers that individual status conditions must pass
through before that condition can be recorded in a group’s Event Register.
These are the Transition Filter Registers and the Enable registers. They
provide selectivity in recording and reporting module status conditions.

Configuring the
Transition Filters

 Figure 3-12 shows that the Condition Register outputs are routed to the
input of the Negative Transition and Positive Transition Filter Registers. For
space reasons they are shown together but are controlled by individual SCPI
commands. Here is the truth table for the Transition Filter Registers:

Condition Reg Bit PTRansition Reg Bit NTRansition Reg Bit Event Reg Input

0→1 0 0 0

1→0 0 0 0

0→1 1 0 1

1→0 1 0 0

0→1 0 1 0

1→0 0 1 1

0→1 1 1 1

1→0 1 1 1

 The Power-on default condition is: All Positive Transition Filter Register
bits set to one and all Negative Transition Filter Register bits set to 0. This
applies to both the Operation and Questionable Data Groups.

An Example using the Operation Group

Suppose that you wanted the module to report via the Status System when it
had completed executing *CAL?. The "Calibrating" bit (bit 0) in the
Operation Condition Register goes to 1 when *CAL? is executing and
returns to 0 when *CAL? is complete. In order to record only the negative
transition of this bit in the STAT:OPER:EVEN register you would send:

 STAT:OPER:PTR 32766 All ones in Pos Trans Filter
register except bit 0=0

STAT:OPER:NTR 1 All zeros in Neg Trans Filter
register except bit 0=1

Now when *CAL? completes and Operation Condition Register bit zero
goes from 1 to 0, Operation Event Register bit zero will become a 1.

Configuring the
Enable Registers

In Figure 3-12 you will note that each Status Group has an Enable Register.
These control whether or not the occurrence of an individual status
condition will be reported by the group’s summary bit in the Status Byte.

Questionable Data Group Examples

If you only wanted the "FIFO Overflowed" condition to be reported by the
QUE bit (bit 3) of the Status Byte, you would execute;

Chapter 3 Programming the HP E1419A 93

STAT:QUES:ENAB 1024 1024=decimal value for bit 10

If you wanted the "FIFO Overflowed" and "Setup Changed" conditions to
be reported you would execute;

STAT:QUES:ENAB 9216 9216=decimal sum of values for
bits 10 and 13

Operation Status Group Examples

If you only wanted the "FIFO Half Full" condition to be reported by the
OPR bit (bit 7) of the Status Byte, you would execute;

STAT:OPER:ENAB 1024 1024=decimal value for bit 10

If you wanted the "FIFO Half Full" and "Scan Complete" conditions to be
reported you would execute;

STAT:OPER:ENAB 1280 1280=decimal sum of values for
bits 10 and 8

Standard Event Group Examples

If you only wanted the "Query Error", "Execution Error", and "Command
Error" conditions to be reported by the ESB bit (bit 5) of the Status Byte,
you would execute;

*ESE 52 52=decimal sum of values for
bits 2, 4, and 5

Reading the Status
Byte

To check if any enabled events have occurred in the status system, you first
read the Status Byte using the *STB? command. If the Status Byte is all
zeros, there is no summary information being sent from any of the status
groups. If the Status Byte is other than zero, one or more enabled events
have occurred. You interpret the Status Byte bit values and take further
action as follows:

Bit 3 (QUE)
bit value 810

Read the Questionable Data Group’s Event Register
using the STAT:QUES:EVENT? command. This
will return bit values for events which have occurred
in this group. After reading, the Event Register is
cleared.

Note that bits in this group indicate error conditions.
If bit 8, 9 or 10 is set, error messages will be found in
the Error Queue. If bit 7 is set, error messages will
be in the error queue following the next *RST or
cycling of power. Use the SYST:ERR? command to
read the error(s).

94 Programming the HP E1419A Chapter 3

Bit 4 (MAV)
bit value 1610

There is a message available in the Output Queue.
You should execute the appropriate query command.

Bit 5 (ESB)
bit value 3210

Read the Standard Event Group’s Event Register
using the *ESR? command. This will return bit
values for events which have occurred in this group.
After reading, this status register is cleared.

Note that bits 2 through 5 in this group indicate error
conditions. If any of these bits are set, error messages
will be found in the Error Queue. Use the
SYST:ERR? command to read these.

Bit 7 (OPR)
bit value 12810

Read the Operation Status Group’s Event Register
using the STAT:OPER:EVENT? command. This will
return bit values for events which have occurred in
this group. After reading, the Event Register is
cleared.

Clearing the Enable
Registers

To clear the Enable Registers execute:

STAT:PRESET for Operation Status and
Questionable Data Groups

*ESE 0 for the Standard Event Group

*SRE 0 for the Status Byte Group

The Status Byte
Group’s Enable

Register

The Enable Register for the Status Byte Group has a special purpose. Notice
in Figure 3-12 how the Status Byte Summary bit wraps back around to the
Status Byte. The summary bit sets the RQS (request service) bit in the
Status Byte. Using this Summary bit (and those from the other status
groups) you can poll the Status Byte and check the RQS bit to determine if
there are any status conditions which need attention. In this way the RQS bit
is like the HP-IB’s SRQ (Service Request) line. The difference is that while
executing an HP-IB serial poll (SPOLL) releases the SRQ line, executing
the *STB? command does not clear the RQS bit in the Status Byte. You
must read the Event Register of the group who’s summary bit is causing the
RQS.

Reading Status
Groups Directly

You may want to directly poll status groups for instrument status rather than
poll the Status Byte for summary information.

Chapter 3 Programming the HP E1419A 95

Reading Event
Registers

The Questionable Data, Operation Status, and Standard Event Groups all
have Event Registers. These Registers log the occurrence of even temporary
status conditions. When read, these registers return the sum of the decimal
values for the condition bits set, then are cleared to make them ready to log
further events. The commands to read these Event Registers are:

STAT:QUES:EVENT? Questionable Data Group Event
Register

STAT:OPER:EVENT? Operation Status Group Event
Register

*ESR? Standard Event Group Event
Register

Clearing Event
Registers

To clear the Event Registers without reading them execute:

*CLS clears all group’s Event Registers

Reading Condition
Registers

The Questionable Data and Operation Status Groups each have a Condition
Register. The Condition Register reflects the group’s status condition in
"real-time". These registers are not latched so transient events may be
missed when the register is read. The commands to read these registers are:

STAT:QUES:COND? Questionable Data Group
Condition Register

STAT:OPER:COND? Operation Status Group
Condition Register

HP E1419A Background Operation

The HP E1419A inherently runs its algorithms and calibrations in the
background mode with no interaction required from the driver. All resources
needed to run the measurements are controlled by the on-board Control
Processor (DSP).

The driver is required to set up the type of measurement to be run, modify
algorithm variables, and to unload data from the card after it appears in the
CVT or FIFO. Once the INIT[:IMM] command is given, the HP E1419A is
initiated and all functions of the trigger system and algorithm execution are
controlled by its on-board control processor. The driver returns to waiting
for user commands. No interrupts are required for the HP E1419A to
complete its measurements.

While the module is running algorithms, the driver can be queried for its
status, variables and algorithms can be accessed, and data can be read from
the FIFO and CVT. The ABORT command may be given to force
continuous execution to complete. Any changes to the measurement set up
will not be allowed until the TRIG:COUNT is reached, or an ABORT

96 Programming the HP E1419A Chapter 3

command is given. Of course any commands or queries can be given to
other instruments while the HP E1419A is running algorithms.

Updating the Status System and VXIbus Interrupts

The driver needs to update the status system’s information whenever the
status of the HP E1419A changes. This update is always done when the
status system is accessed, or when CALibrate, INITiate, or ABORt
commands are executed. Most of the bits in the OPER and QUES registers
represent conditions which can change while the HP E1419A is measuring
(initiated). In many circumstances it is sufficient to have the status system
bits updated the next time the status system is accessed, or the INIT or
ABORt commands are given. When it is desired to have the status system
bits updated closer in time to when the condition changes on the HP
E1419A, the HP E1419A interrupts can be used.

The HP E1419A can send VXI interrupts upon the following conditions:

• Trigger too Fast condition is detected. Trigger comes prior to trigger
system being ready to receive trigger.

• FIFO overflowed. In either FIFO mode, data was received after the
FIFO was full.

• Overvoltage detection on input. If the input protection jumper has not
been cut, the input relays have all been opened, and a *RST is
required to reset the HP E1419A.

• Scan complete. The HP E1419A has finished a scan list.
• SCP trigger. A trigger was received from an SCP.
• FIFO half full. The FIFO contains at least 32768 values.
• Measurement complete. The trigger system exited the "Wait-For-

Arm". This clears the Measuring bit in the OPER register.
• Algorithm executes an "interrupt()" statement.

These HP E1419A interrupts are not always enabled since, under some
circumstances, this could be detrimental to the users system operation. For
example, the Scan Complete, SCP triggers, FIFO half full, and
Measurement complete interrupts could come repetitively, at rates that
would cause the operating system to be swamped processing interrupts.
These conditions are dependent upon the user’s overall system design,
therefore the driver allows the user to decide which, if any, interrupts will be
enabled.

The way the user controls which interrupts will be enabled is via the *OPC,
STATUS:OPER/QUES:ENABLE, and STAT:PRESET commands.

Each of the interrupting conditions listed above, has a corresponding bit in
the QUES or OPER registers. If that bit is enabled via the

Chapter 3 Programming the HP E1419A 97

STATus:OPER/QUES:ENABle command to be a part of the group
summary bit, it will also enable the HP E1419A interrupt for that condition.
If that bit is not enabled, the corresponding interrupt will be disabled.

Note Once a status driven condition sets an enabled bit in one of the Event
registers, that Event register must be read (STAT:OPER:EVENT? or
STAT:QUES:EVENT?) in order to clear the register and re-fenable further
interrupts to occurr.

Sending the STAT:PRESET will disable all the interrupts from the HP
E1419A.

Sending the *OPC command will enable the measurement complete
interrupt. Once this interrupt is received and the OPC condition sent to the
status system, this interrupt will be disabled if it was not previously enabled
via the STATUS:OPER/QUES:ENABLE command.

Note for C-SCPI

and SICL

The above description is always true for a downloaded driver. In the
C-SCPI driver, however, the interrupts will only be enabled if
cscpi_overlap mode is ON when the enable command is given. If
cscpi_overlap is OFF, the user is indicating they do not want interrupts to
be enabled. Any subsequent changes to cscpi_overlap will not change
which interrupts are enabled. Only sending *OPC or
STAT:OPER/QUES:ENAB with cscpi_overlap ON will enable interrupts.

In addition the user can enable or disable all interrupts via the SICL calls,
iintron() and iintroff().

Creating and Loading Custom EU Conversion Tables

The HP E1419A provides for loading custom EU conversion tables. This
allows you to have on-board conversion of transducers not otherwise
supported by the HP E1419A.

Standard EU Operation The EU conversion tables built into the HP E1419A are stored in a "library"
in the module’s non-volatile Flash Memory. When you link a specific
channel to a standard EU conversion using the [SENSe:]FUNC:…
command, the module copies that table from the library to a segment of
RAM allocated to the specified channel. When a single EU conversion is
specified for multiple channels, multiple copies of that conversion table are

98 Programming the HP E1419A Chapter 3

put in RAM, one copy into each channel’s Table RAM Segment. The
conversion table-per-channel arrangement allows higher speed scanning
since the table is already loaded and ready to use when the channel is
scanned.

Custom EU Operation Custom EU conversion tables are loaded directly into a channel’s Table
RAM Segment using the DIAG:CUST:LIN and DIAG:CUST:PIEC
commands. The DIAG:CUST:… commands can specify multiple channels.
To "link" custom conversions to their tables you would execute the
[SENSe:]FUNC:CUST <range>,(@<ch_list>) command. Unlike standard EU
conversions, the custom EU conversions are already linked to their channels
(tables loaded) before you execute the [SENSe:]FUNC:CUST command but
the command allows you to specify the A/D range for these channels.

NOTE The *RST command clears all channel Table RAM segments. Custom EU
conversion tables must be re-loaded using the DIAG:CUST:… commands.

Custom EU Tables The HP E1419A uses two types of EU conversion tables, linear and
piecewise. The linear table describes the transducer’s response slope and
offset (y=mx+b). The piecewise conversion table gets its name because it is
actually an approximation of the transducer’s response curve in the form of
512 linear segments whose end-points fall on the curve. Data points that fall
between the end-points are linearly interpolated. The built-in EU
conversions for thermistors, thermocouples, and RTDs use this type of table.

Custom Thermocouple
EU Conversions

The HP E1419A can measure temperature using custom characterized
thermocouple wire of types E, J, K, N, R, S, and T. The custom EU table
generated for the individual batch of thermocouple wire is loaded to the
appropriate channels using the DIAG:CUST:PIEC command (see the
HP VEE example "eu_1419.vee"). Since thermocouple EU conversion
requires a "reference junction compensation" of the raw thermocouple
voltage, the custom EU table is linked to the channel(s) using the command
[SENSe:]FUNCtion:CUSTom:TCouple <type>[,<range>],(@<ch_list>).

The <type> parameter specifies the type of thermocouple wire so that the
correct built-in table will be used for reference junction compensation.
Reference junction compensation is based on the reference junction
temperature at the time the custom channel is measured. For more information
see Thermocouple Reference Temperature Compensation on page 3-64.

Custom Reference
Temperature EU

Conversions

The HP E1419A can measure reference junction temperatures using custom
characterized RTDs and thermistors. The custom EU table generated for the
individually characterized transducer is loaded to the appropriate channel(s)
using the DIAG:CUST:PIEC command (see the HP VEE example
"eu_1419.vee"). Since the EU conversion from this custom EU table is to be

Chapter 3 Programming the HP E1419A 99

considered the "reference junction temperature", the channel is linked to this
EU table using the command [SENSe:]FUNCtion:CUSTom:REFerence
[<range>,](@<ch_list>).

This command uses the custom EU conversion to generate the reference
junction temperature as explained in the section Thermocouple Reference
Temperature Compensation on page 3-64.

Creating Conversion
Tables

The HP 1419A comes with an HP VEE example program you can use to
generate custom EU tables. See the "eu_1419.vee" example in Chapter 5 for
more information.

Summary The following points describe the capabilities of custom EU conversion:

• A given channel only has a single active EU conversion table
assigned to it. Changing tables requires loading it with a
DIAG:CUST:… command.

• The limit on the number of different custom EU tables that can be
loaded in an HP E1419A is the same as the number of channels.

• Custom tables can provide the same level of accuracy as the built-in
tables. In fact the built-in resistance function uses a linear conversion
table, and the built -in temperature functions use the piecewise
conversion table.

Compensating for System Offsets

System Wiring Offsets The HP E1419A can compensate for offsets in your system’s field wiring.
Apply shorts to channels at the Unit-Under-Test (UUT) end of your field
wiring, and then execute the CAL:TARE (@<ch_list>) command. The
instrument will measure the voltage at each channel in <ch_list> and save
those values in RAM as channel Tare constants.

Important Note for

Thermocouples • You must not use CAL:TARE on field wiring that is made up of
thermocouple wire. The voltage that a thermocouple wire pair
generates can not be removed by introducing a short anywhere
between its junction and its connection to an isothermal panel (either
the HP E1419A’s Terminal Module or a remote isothermal reference
block). Thermal voltage is generated along the entire length of a
thermocouple pair where there is any temperature gradient along that
length. To CAL:TARE thermocouple wire this way would introduce
an unwanted offset in the voltage/temperature relationship for that
thermocouple. If you inadvertently CAL:TARE a thermocouple wire
pair, see "Resetting CAL:TARE" on page 3-102.

100 Programming the HP E1419A Chapter 3

• You should use CAL:TARE to compensate wiring offsets (copper
wire, not thermocouple wire) between the HP E1419A and a remote
thermocouple reference block. Disconnect the thermocouples and
introduce copper shorting wires between each channel’s HI and LO,
then execute CAL:TARE for these channels.

Residual Sensor
Offsets

To remove offsets like those in an unstrained strain gage bridge, execute the
CAL:TARE command on those channels. The module will then measure the
offsets and as in the wiring case above, remove these offsets from future
measurements. In the strain gage case, this "balances the bridge" so all
measurements have the initial unstrained offset removed to allow the most
accurate high speed measurements possible.

Operation After CAL:TARE <ch_list> measures and stores the offset voltages, it then
performs the equivalent of a *CAL? operation. This operation uses the Tare
constants to set a DAC which will remove each channel offset as "seen" by
the module’s A/D converter.

The absolute voltage level that CAL:TARE can remove is dependent on the
A/D range. CAL:TARE will choose the lowest range that can handle the
existing offset voltage. The range that CAL:TARE chooses will become the
lowest usable range (range floor) for that channel. For any channel that has
been "CAL:TAREd" Autorange will not go below that range floor and
selecting a manual range below the range floor will return an Overload
value (see table on page 6-234).

As an example assume that the system wiring to channel 0 generates a +0.1
Volt offset with 0 Volts (a short) applied at the UUT. Before CAL:TARE
the module would return a reading of 0.1 Volt for channel 0. After
CAL:TARE (@100), the module will return a reading of 0 Volts with a
short applied at the UUT and the system wiring offset will be removed from
all measurements of the signal to channel 0. Think of the signal applied to
the instrument’s channel input as the gross signal value. CAL:TARE
removes the tare portion leaving only the net signal value.

Because of settling times, especially on filtered channels, CAL:TARE can
take a number of minutes to execute.

The tare calibration constants created during CAL:TARE are stored in and
are usable from the instrument’s RAM. If you want the Tare constants to be
stored in non-volatile Flash Memory you can execute the
CAL:STORE TARE command.

Chapter 3 Programming the HP E1419A 101

NOTE The HP E1419A’s Flash Memory has a finite lifetime of approximately ten
thousand write cycles (unlimited read cycles). While executing CAL:STOR
once every day would not exceed the lifetime of the Flash Memory for
approximately 27 years, an application that stored constants many times
each day would unnecessarily shorten the Flash Memory’s lifetime.

Resetting CAL:TARE If you wish to "undo" the CAL:TARE operation, you can execute
CAL:TARE:RESet then *CAL?/CAL:SET. If current Tare calibration
constants have been stored in Flash Memory, execute CAL:TARE:RESET,
then CAL:STORE TARE.

Special
Considerations

Here are some things to keep in mind when using CAL:TARE.

Maximum Tare
Capability

The tare value that can be compensated for is dependent on the instrument
range and SCP channel gain settings. The following table lists these limits

Maximum CAL:TARE Offsets

A/D range
±V F.Scale

Offset V
Gain x1

Offset V
Gain x8

Offset V
Gain x16

Offset V
Gain x64

16
4
1

.25
.0625

3.2213
.82101
.23061
.07581
.03792

.40104

.10101

.02721

.00786

.00312

.20009

.05007

.01317

.00349

.00112

.04970

.01220

.00297

.00055
n/a

Changing Gains or
Filters

If you decide to change a channel’s SCP setup after a CAL:TARE operation
you must perform a *CAL? operation to generate new DAC constants and
reset the "range floor" for the stored Tare value. You must also consider the
tare capability of the range/gain setup you are changing to. For instance if
the actual offset present is 0.6 Volts and was "Tared" for a 4 Volt
range/Gain x1 setup, moving to a 1 Volt range/Gain x1 setup will return
Overload values for that channel since the 1 Volt range is below the range
floor as set by CAL:TARE. See table on page 6-234 for more on values
returned for Overload readings.

Unexpected Channel
Offsets or Overloads

This can occur when your HP E1419A’s Flash Memory contains
CAL:TARE offset constants that are no longer appropriate for its current
application. Execute CAL:TARE:RESET then *CAL? to reset the tare
constants in RAM. Measure the affected channels again. If the problems go
away, you can now reset the tare constants in Flash memory by executing
CAL:STORE TARE.

102 Programming the HP E1419A Chapter 3

Detecting Open Transducers

Most of the HP E1419A’s analog input SCPs provide a method to detect
open transducers. When Open Transducer Detect (OTD) is enabled, the SCP
injects a small current into the HIGH and LOW input of each channel. The
polarity of the current pulls the HIGH inputs toward +17 volts and the LOW
inputs towards -17 volts. If a transducer is open, measuring that channel will
return an over-voltage reading. OTD is available on a per SCP basis. All
eight channels of an SCP are enabled or disabled together. See Figure 3-13
for a simplified schematic diagram of the OTD circuit.

NOTES 1) When OTD is enabled, the inputs have up to 0.2µA injected into them. If
this current will adversely affect your measurement, but you still want to check
for open transducers, you can enable OTD, run your algorithms, check analog
input variables for measurement values that indicate an open transducer, then
disable OTD and run your algorithms without it. The HP E1419A’s accuracy
specifications apply only when OTD is off.

2) When a channel’s SCP filtering is enabled, allow 15 seconds after turning
on OTD for the filters capacitors to charge before checking for open
transducers.

To enable or disable Open Transducer Detection, use the
DIAGnostic:OTDetect <enable>, (@<ch_list>) command.

Figure 3-13 Simplified Open Transducer Detect Circuit

Chapter 3 Programming the HP E1419A 103

• The enable parameter can specify ON or OFF

• An SCP is addressed when the ch_list parameter specifies a channel
number contained on the SCP. The first channel on each SCP is:

0, 8, 16, 24, 32, 40, 48, and 56

To enable Open Transducer Detection on all channels on SCPs 1 and 3:

DIAG:OTD ON, (@100,116) 0 is on SCP 1 and 16 is on SCP3

To disable Open Transducer Detection on all channels on SCPs 1 and 3:

DIAG:OTD OFF, (@100,116)

More On Auto Ranging

There are rare circumstances where your input signal can be difficult for the
HP E1419A to auto range correctly. The module completes the range
selection based on your input signal about 6 µsec before the actual
measurement is made on that channel. If during that period your signal
becomes greater than the selected range can handle, the module will return
an overflow reading (±INFinity).

The only solution to this problem is to use manual range on channels that
display this behavior.

Settling Characteristics

Some sequences of input signals as determined by their order of appearance
in a scan list can be a challenge to measure accurately. This section is
intended to help you determine if your system presents any of these
problems and how best to eliminate them or reduce their effect.

Background While the HP E1419A can auto-range, measure, and convert a reading to
engineering units as fast as once every 10 µs, measuring a high level signal
followed by a very low level signal may require some extra settling time. As
seen from the point of view of the HP E1419A’s Analog-to-Digital
converter and its Range Amplifier, this situation is the most difficult to
measure. For example lets look at two consecutive channels; the first
measures a power supply at 15.5 volts, the next measures a thermocouple
temperature. First the input to the Range Amplifier is at 15.5 volts (near its
maximum) with any stray capacitances charged accordingly, then it
immediately is switched to a thermocouple channel and down-ranged to its
.0625 volt range. On this range, the resolution is now 1.91 µvolt per Least
Significant Bit (LSB). Because of this sensitivity, the time to discharge
these stray capacitances may have to be considered.

104 Programming the HP E1419A Chapter 3

Thus far in the discussion, we’ve assumed that the low-level channel
measured after a high-level channel has presented a low impedance path to
discharge the A/D’s stray capacitances (path was the thermocouple wire).
The combination of a resistance measurement through an HP E1501 Direct
Input SCP presents a much higher impedance path. A very common
measurement like this would be the temperature of a thermistor. If measured
through a Direct Input SCP, the source impedance of the measurement is
essentially the value of the thermistor (the output impedance of the current
source is in the gigohm region). Even though this is a higher level
measurement than the previous example, the settling time can be even
longer due to the slower discharge of the stray capacitances. The simple
answer here is to always use an SCP that presents a low impedance buffered
output to the HP E1419A’s Range Amp and A/D. The HP E1503, 8, 9, 10,
12, and 14 through 17 SCPs all provide this capability.

Checking for
Problems

The method we’ll use to quickly determine if any of your system’s channels
needs more settling time is to simply apply some settling time to every
channel. Use this procedure:

1. First run your system to make a record of its current measurement
performance.

2. Then use the SAMPle:TIMer command to add a significant settling
delay to every measurement in the scan list. Take care that the sample
time multiplied by the number of channels in the scan list doesn’t
exceed the time between triggers.

3. Now run your system and look primarily for low level channel
measurements (like thermocouples) who’s DC value changes
somewhat. If you find channels that respond to this increase in
sample period, you may also notice that these channels may return
slightly quieter measurements as well. The extra sample period
reduces or removes the affected channels coupling to the value of the
channel measured just before it.

4. If you see some improvement, increase the sample period again and
perform another test. When you increase the sample period and no
improvement is seen, you have found the maximum settling delay
that any single channel requires.

5. If the quality of the measurements does not respond to this increase in
sample period, then inadequate settling time is not likely to be
causing measurement problems.

Fixing the Problem If your system scans fast enough with the increased sample period, your
problem is solved. Your system is only running as fast as the slowest
channel allows but if its fast enough that’s OK. If on the other hand, getting

Chapter 3 Programming the HP E1419A 105

quality readings has slowed your scan rate too much, there are two other
methods that will, either separately or in combination, have your system
making good measurements as fast as possible.

Use Amplifier SCPs Amplifier SCPs can remove the need to increase settling delays. How? Each
gain factor of 4 provided by the SCP amplifier allows the Range Amplifier
to be set one range higher and still provide the same measurement
resolution. Amplifier SCPs for the HP E1419A are available with gains of
.5, 8, 16, 64, and 512. Lets return to our earlier example of a difficult
measurement where one channel is measuring 15.5 volts on the 16 volt
range, and the next a thermocouple on the .0625 range. If our thermocouple
channel is amplified through an SCP with a gain of 16, the Range Amplifier
can be set to the 1 volt range. On this range the A/D resolution drops to
around 31 µvolt per LSB so the stray capacitances discharging after the 15.5
volt measurement are now only one sixteenth as significant and thus reduce
any required settling delay. Of course for most thermocouple measurements
we can use a gain of 64 and set the Range Amplifier to the 4 volt range. At
this setting the A/D resolution for one LSB drops to about 122 µvolts and
further reduces or removes any need for additional settling delay. This
improvement is accomplished without any reduction of the overall
measurement resolution.

NOTE Filter-amplifier SCPs can provide improvements in low-level signal
measurements that go beyond just settling delay reduction. Amplifying the
input signal at the SCP allows using less gain at the Range Amplifier
(higher range) for the same measurement resolution. Since the Range
Amplifier has to track signal level changes (from the multiplexer) at up to
100 KHz, its bandwidth must be much higher than the bandwidth of
individual filter-amplifier SCP channels. Using higher SCP gain along with
lower Range Amplifier gain can significantly increase normal-mode noise
rejection.

Adding Settling Delay
for Specific Channels

This method adds settling time only to individual problem measurements as
opposed to the SAMPle:TIMer command that introduces extra time for all
analog input channels. If you see problems on only a few channels, you can
use the SENS:CHAN:SETTLING <num_samples>,(@<ch_list>) command
to add extra settling time for just these problem channels. What
SENS:CHAN:SETTLING does is instruct the HP E1419A to replace single
instances of a channel in the Scan List with multiple repeat instances of that
channel if it is specified in (@<ch_list>). The number of repeats is set by
<num_samples>.

Example:

106 Programming the HP E1419A Chapter 3

Normal Scan List:
100, 101, 102, 103, 104

Scan List after SENS:CHAN:SETT 3,(@100,103)
100, 100, 100, 101, 102, 103, 103, 103, 104

When the algorithms are run, channels 0 and 3 will be sampled 3 times, and
the final value from each will be sent to the Channel Input Buffer. This
provides extra settling time while channels 1, 2, and 4 are measured in a
single sample period and their values also sent to the Channel Input Buffer.

Chapter 3 Programming the HP E1419A 107

108 Programming the HP E1419A Chapter 3

Chapter 4
The Algorithm Language and Environment

Learning Hint This chapter builds upon the "HP E1419A Programming Model"
information presented in Chapter 3. You should read that section before
moving on to this one.

About This Chapter

This chapter describes how to write algorithms that apply the HP E1419A’s
measurement, calculation, and control resources. It describes these resources
and how you can access them with the HP E1419A’s Algorithm Language.
This manual assumes that you have programming experience already.
Ideally, you have programmed in the ’C’ language since the HP E1419A’s
Algorithm Language is based on ’C’. Following the tutorial sections of this
chapter is an Algorithm Language Reference. The contents of this chapter
are:

• Overview of the Algorithm Language 110
• The Algorithm Execution Environment 112
• Accessing the HP E1419A’s Resources 113

Accessing I/O Channels . 114
Defining and Accessing Global Variables 115
Determining First Execution . 115
Initializing Variables . 116
Sending Data to the CVT and FIFO 116
Setting a VXIbus Interrupt . 117
Calling User Defined Functions . 118

• Operating Sequence . 118
• Defining Algorithms (ALG:DEF) . 120
• A Very Simple First Algorithm . 124
• Non Control Algorithms . 125

Data Acquisition Algorithm . 125
Process Monitoring Algorithm . 125

• Algorithm Language Reference . 126
Standard Reserved Keywords . 126
Special HP E1419A Reserved Keywords 126
Identifiers . 126
Special Identifiers for Channels . 127
Operators . 127
Intrinsic Functions and Statements 128
Program Flow Control . 128
Data Types . 129
Data Structures . 130
Type Float as Integer . 131

Chapter 4 The Algorithm Language and Environment 109

Bitfield Access . 131
• Language Syntax Summary . 133
• Program Structure and Syntax . 138

Overview of the Algorithm Language

The HP E1419A’s Algorithm Language is a limited version of the ’C’
programming language. It is designed to provide the necessary control
constructs and algebraic operations to support measurement and control
algorithms. There are no loop constructs, multi-dimensional arrays, or
transcendental functions. Further, an algorithm must be completely
contained within a single function subprogram ’ALGn’. The algorithm can
not call another user-written function subprogram.

It is important to note, that while the HP E1419A’s Algorithm Language has
a limited set of intrinsic arithmetic operators, it also provides the capability
to call special user defined functions "f(x)". The HP VEE example programs
"fn_1419.vee" and "eufn1419.vee" in Chapter 5 will convert your functions
into piece-wise linear interpolated tables and give them names you choose.
The HP E1419A can extract function values from these tables in under
18µseconds regardless of the function’s original complexity. This method provides
faster algorithm execution by moving the complex math operations off-board.

This section assumes that you already program in some language. If you are
already a ’C’ language programmer, this chapter is all you’ll probably need
to create your algorithm. If you are not familiar with the C programming
language, you should study the "Program Structure and Syntax" section
before you begin to write your custom algorithms.

This section will present a quick look at the Algorithm Language. The
complete language reference is provided later in this chapter.

Arithmetic Operators: add +, subtract -, multiply *, divide /
NOTE: Also see "Calling User Defined Functions" on page 4-118.

Assignment Operator: =

Comparison Functions: less than <, less than or equal <=, greater than >,
greater than or equal >=, equal to ==, not equal to !=

Boolean Functions: and &&, or ||, not !

Variables: scalars of type static float, and single dimensioned
arrays of type static float limited to 1024 elements.

110 The Algorithm Language and Environment Chapter 4

Constants:
32-bit decimal integer; Dddd... where D and d are decimal digits but D is
not zero. No decimal point or exponent specified.
32-bit octal integer; 0oo... where 0 is a leading zero and o is an octal
digit. No decimal point or exponent specified.
32-bit hexadecimal integer; 0Xhhh... or 0xhhh... where h is a hex
digit.
32-bit floating point; ddd., ddd.ddd, ddde±dd, dddE±dd,
ddd.dddedd, or ddd.dddEdd where d is a decimal digit.

Flow Control: conditional construct if(){ } else { }

Intrinsic Functions:
Return absulute value; abs(<expr1>)
Return minimum; min(<expr1>,<expr2>)
Return maximum; max(<expr1>,<expr2>)
User defined function; <user_name>(<expr>)
Write value to CVT element; writecvt(<expr>,<expr>)
Write value to FIFO buffer; writefifo(<expr>)
Write value to both CVT and FIFO; writeboth(<expr>,<expr>)

Example Language
Usage

Here are examples of some Algorithm Language elements assembled to
show them used in context. Later sections will explain any unfamiliar
elements you see here:

Example 1;
/*** get input from channel 8, calculate output, check limits, output to ch 40 & 41 ***/
static float output_max = .020; /* 20 mA max output */
static float output_min = .004; /* 4 mA min output */
static float input_val, output_val; /* intermediate I/O vars */

input val_ = I108; /* get value from input buffer channel 8*/
output_val = 12.5 * input_val; /* calculate desired output */
if (output_val > output_max) /* check output greater than limit */

output_val = output_max; /* if so, output max limit */
else if(output_val < output_min) /* check output less than limit */

output_val = output_min; /* if so, output min limit */
O140 = output_val / 2; /* split output_val between two SCP */
O141 = output_val / 2; /* channels to get up to 20mA max */

Example 2;
/*** same function as example 1 above but shows a different approach ***/
static float max_output = .020; /* 20 mA max output */
static float min_output = .004; /* 4 mA min output */

/* following lines input, limit output between min and max_output, and outputs. */
/* output is split to two current output channels wired in parallell to provide 20mA */
O140 = max(min_output, min(max_output, (12.5 * I108) / 2));
O141 = max(min_output, min(max_output, (12.5 * I108) / 2));

Chapter 4 The Algorithm Language and Environment 111

The Algorithm Execution Environment

This section describes the execution environment that the HP E1419A
provides for your algorithms. Here we describe the relationship of your
algorithm to the main() function that calls it.

The Main Function All ’C’ language programs consist of one or more functions. A ’C’ program
must have a function called main(). In the HP E1419A, the main() function
is usually generated automatically by the driver when you execute the INIT
command. The main() function executes each time the module is triggered,
and controls execution of your algorithm functions. See Figure 4-1 for a
partial listing of main().

How Your
Algorithms Fit In

When the module is INITiated, a set of control variables and a function
calling sequence is created for all algorithms you have defined. The value of
variable "State_n" is set with the ALGorithm:STATe command and
determines whether the algorithm will be called. The value of "Ratio_n" is
set with the ALGorithm:SCAN:RATio command and determines how often
the algorithm will be called (relative to trigger events).

Since the function-calling interface to your algorithms is fixed in the main()
function, the "header" of your algorithm function is also pre-defined. This
means that unlike standard ’C’ language programming, your algorithm
program (a function) need not (must not) include the function declaration
header, opening brace "{", and closing brace "}". You only supply the
"body" of your function, the HP E1419A’s driver supplies the rest.

Think of the program space in the HP E1419A in the form of a source file
with any global variables first, then the main() function followed by as
many algorithms as you have defined. Of course what is really contained in
the HP E1419A’s algorithm memory are executable codes that have been
translated from your downloaded source code. While not an exact
representation of the algorithm execution environment, Figure 4-1 shows
the relationship between a normal ’C’ program and two HP E1419A
algorithms.

112 The Algorithm Language and Environment Chapter 4

Accessing the E1419A’s Resources

This section describes how your algorithm accesses hardware and software
resources provided by the HP E1419A. The following is a list of these
resources:

• I/O channels.
• Global variables defined before your algorithm is defined.
• The value ALG_NUM which the HP E1419A makes available to

your algorithm. ALG_NUM = 1 for ALG1, 2 for ALG2 etc.
• User defined functions defined with the ALG:FUNC:DEF command.
• The Current Value Table (CVT), and the data FIFO buffer (FIFO) to

output algorithm data to your application program.
• VXIbus Interrupts.

/* GLOBALS you define with ALG:DEF GLOBALS... go here */

/* global variable First_loop equals 1 until all algorithms called */
static float First_loop; /* global value set to 1 at each INIT */
/**************************** function main() ****************************/
/*The HP E1419A driver creates main() at INIT time. This example
shows a main created after 2 algorithms have been defined. */
main()
{

/********* declaration of variables local to main() ********/
static float State_1, Ratio_1, Count_1; /* created if alg1 defined */
static float State_2, Ratio_2, Count_2; /* created if alg2 defined */

/********* this section created if ALG1 is defined ********/
Count_1 = Count_1 - 1; /* Count_1 used for ALG:SCAN:RATIO */
if (Count_1 <= 0) { /* test for ratio met (<=0 means execute)*/

Count_1 = Ratio_1; /* Count_1 = ALG:SCAN:RATIO setting */
if (State_1) alg1(); /* if ALG:STATE ALG1,ON, call alg1 */

}

/********* this section created if ALG2 is defined ********/
Count_2 = Count_2 - 1; /* Count_2 used for ALG:SCAN:RATIO */
if (Count_2 <= 0) { /* test for ratio met (<=0 means execute)*/

Count_2 = Ratio_2; /* Count_2 = ALG:SCAN:RATIO setting */
if (State_2) alg2(); /* if ALG:STATE ALG2,ON, call alg2 */

}
First_loop = 0; /* reset First_loop after last alg has been called */

}
/* ************************ end function main() *************************/

ALG1() /* this function shell created by ALG:DEF ’ALG1’.... */
{
static float ALG_NUM = 1; /* from driver to ID this algorithm */

/********* Your algorithm code goes here **********/
}

ALG2() /* this function shell created by ALG:DEF ’ALG2’.... */
{
static float ALG_NUM = 2; /* from driver to ID this algorithm */

/********* Your algorithm code goes here **********/
}

Your algorithms go here

Begin algorithm "shells"
(built by HP E1419A’s driver)

End main() function

Begin main() function
(built by HP E1419A’s driver)

Global variables areaGlobal variables area

First_loop declared by
HP E1419A’s driver

Figure 4-1 Source Listing of Function main()

Chapter 4 The Algorithm Language and Environment 113

Accessing I/O
Channels

In the Algorithm Language, channels are referenced as pre-defined variable
identifiers. The general channel identifier syntax is "Iccc" for input channels
and "Occc" for output channels; where ccc is a channel number from 100
(channel 0) through 163 (channel 63). Like all HP E1419A variables,
channel identifier variables always contain 32-bit floating point values even
when the channel is part of a digital I/O SCP. If the digital I/O SCP has 8-bit
channels (like the HP E1533), the channel’s identifiers (Occc and Iccc) can
take on the values 0 through 255. To access individual bit values you may
append ".Bn" to the normal channel syntax; where n is the bit number (0
through 7). If the Digital I/O SCP has single-bit channels (like the
HP E1534), its channel identifiers can only take on the values 0 and 1.
Examples:

O148 = 1; assign value to output chan 0 on
HP E1534.

Inp_val = I160; from 8-bit channel on HP E1533
Inp_val will be 0. to 255.

Bit_4 = I156.B4; assign HP E1533 chan 56 bit 4
to variable Bit_4

Output Channels

Output channels can appear on either or both sides of an assignment
operator. They can appear anywhere other variables can appear. Examples:

O132= 12.5; send value to output channel
buffer element 0

O156.B4 = ! O156.B4; compliment value found in output
channel buffer element 56, bit 4
each time algorithm is executed.

writecvt(O132,32); send value of output channel 132
to CVT element 32

Input Channels

Input channel identifiers can only appear on the right side of assignment
operators. It doesn’t make sense to output values to an input channel. Other
than that, they can appear anywhere other variables can appear. Examples:

dig_bit_value = I157.B0; retrieve value from Input
Channel Buffer element 57, bit 0

inp_value = I124; retrieve value from Input
Channel Buffer element 24

O132 = 4 * I124; retrieve value from Input
Channel Buffer element 24,
multiply by 4 and send result to
Output Channel Buffer element
32

writefifo(I124); send value of input channel 24 to
FIFO buffer

114 The Algorithm Language and Environment Chapter 4

Defined Input and
Output Channels

Your algorithm "references" channels. It can reference input or output
channels. But, in order for these channels to be available to your algorithm
they must be "defined". What we mean by "defined" is that an SCP must be
installed, and an appropriate SOURce or SENSe :FUNCtion must explicitly
(or implicitly, in the case of HP E1531, 32, and HP E1536 SCPs) be tied to
the channels. If your algorithm references an input channel identifier that is
not configured as an input channel, or an output channel identifier that is not
configured as an output channel, the driver may generate an error when your
algorithm is defined with ALG:DEF.

Defining and
Accessing Global

Variables

Global variables are those declared outside of the main() function and any
algorithms (see Figure 4-1). A global variable can be read or changed by
any algorithm. To declare global variables you use the command:

ALG:DEF ’GLOBALS’,’<source_code>’

where <source_code> is Algorithm Language source limited to constructs
for declaring variables. It must not contain executable statements. Examples:

declare single variable without assignment;

ALG:DEF ’GLOBALS’,’static float glob_scal_var;’
declare single variable with assignment;

ALG:DEF ’GLOBALS’,’static float glob_scal_var = 22.53;’
declare one scalar variable and one array variable;

ALG:DEF ’GLOBALS’,’static float glob_scal_var, glob_array_var[12];’

You access global variables within your algorithm like any other variable.

glob_scal_var = P_factor * I108;

NOTES 1. All variables must be declared static float.
2. Array variables cannot be assigned a value when declared.
3. All variables declared within your algorithm are local to that

algorithm. If you locally declare a variable with the same identifier as
an existing global variable, your algorithm will access the local
variable only.

Determining
First Execution

(First_loop)

The HP E1419A always declares the global variable First_loop. First_loop
is set to 1 each time INIT is executed. After main() calls all enabled
algorithms, it sets First_loop to 0. By testing First_loop, your algorithm can
determine if it is being called for the first time since an INITiate command
was received. Example:

Chapter 4 The Algorithm Language and Environment 115

static float scalar_var;
static float array_var [4];

/* assign constants to variables on first pass only */
if (First_loop)
{

scalar_var = 22.3;
array_var[0] = 0;
array_var[1] = 0;
array_var[2] = 1.2;
array_var[3] = 4;

}

Initializing Variables Variable initialization can be performed during three distinct HP E1419A
operations.

1. When you define algorithms with the ALG:DEFINE command. A
declaration initialization statement is a command to the driver’s
translator function and doesn’t create an executable statement. The
value assigned during algorithm definition is not re-assigned when
the algorithm is run with the INIT command. Example statement:

static float my_variable = 22.95;/* tells translator to allocate space for this */
/* variable and initialize it to 22.95 */

2. Each time the algorithm executes. By placing an assignment
statement within your algorithm. This will be executed each time the
algorithm is executed. Example statment.

my_variable = 22.95; /* reset variable to 22.95 every pass */

3. When the algorithm first executes after an INIT command. By using
the global variable First_loop your algorithm can distinguish the first
execution since an INIT command was sent. Example statement:

if(First_loop) my_variable = 22.95; /* reset variable only when INIT starts alg */

Sending Data to the
CVT and FIFO

The Current Value Table (CVT) and FIFO data buffer provide
communication from your algorithm to your application program (running
in your VXIbus controller).

Writing a CVT element

The CVT provides 502 addressable elements where algorithm values can be
stored. To send a value to a CVT element, you will execute the intrinsic
Algorithm Language statement writecvt(<expression>,<cvt_element>),
where <cvt_element> can take the value 10 through 511. The following is an
example algorithm statement:

writecvt(O136, 330); /* send output channel 36’s value to CVT element 330 */

Each time your algorithm writes a value to a CVT element the previous
value in that element is overwritten.

116 The Algorithm Language and Environment Chapter 4

Reading CVT elements

Your application program reads one or more CVT elements by executing
the SCPI command [SENSe:]DATA:CVT? (@<element_list>), where
<element_list> specifies one or more individual elements and/or a range of
contiguous elements. The following example command will help to explain
the <element_list> syntax.

DATA:CVT? (@10,20,30:33,40:43,330) Return elements 10, 20, 30-33,
40-43. and element 330.

Individual element numbers are isolated by commas. A contiguous range of
elements is specified by: <starting element>colon<ending element>.

Writing values to the FIFO

The FIFO, as the name implies is a First-In-First-Out buffer. It can buffer up
to 65,024 values. This capability allows your algorithm to send a continuous
stream of data values related in time by their position in the buffer. This can
be thought of as an electronic strip-chart recorder. Each value is sent to the
FIFO by executing the Algorithm Language intrinsic statement
writefifo(<expression>). The following in an example algorithm statement:

writefifo(O139); /* send output channel 39’s value to the FIFO */

Since you can determine the actual algorithm execution rate (see
"Programming the Trigger Timer" on page 3-80), the time relationship of
readings in the FIFO is very deterministic.

Reading values from the FIFO

For a discussion on reading values from the FIFO, see "Retrieving
Algorithm Data" on page 3-83.

Writing values to the FIFO and CVT

The writeboth(<expression>,<cvt_element>) statement sends the value of
<expression> both to the FIFO and to a <cvt_element>. Reading these
values is done the same way as mentioned for writefifo() and writecvt().

Setting a VXIbus
Interrupt

The algorithm language provides the function interrupt() to force a VXIbus
interrupt. When interrupt() is executed in your algorithm, a VXIbus
interrupt line (selected by the the SCPI command DIAG:INTR[:LINe]) is
asserted. The following example algorithm code tests an input channel value
and sets an interrupt if it is higher or lower than set limits.

static float upper_limit = 1.2, lower_limit = 0.2;
if(I124 > upper_limit || I124 < lower_limit) interrupt();

Chapter 4 The Algorithm Language and Environment 117

Calling User
Defined Functions

Access to user defined functions is provided to avoid complex equation
calculation within your algorithm. Essentially what is provided with the
HP E1419A is a method to pre-compute user function values outside of
algorithm execution and place these values in tables, one for each user
function. Each function table element contains a slope and offset to calculate
an mx+b over the interval (x is the value you provide to the function). This
allows the DSP to linearly interpolate the table for a given input value and
return the function’s value much faster than if a transcendental function’s
equation were arithmetically evaluated using a power series expansion.

User functions are defined by downloading function table values with the
ALG:FUNC:DEF command and can take any name that is a valid ’C’
identifier like ’haversine’, ’sqr’, ’log10’ etc. To find out how to generate
table values from your function equation, see the HP VEE example program
"fn_1419.vee" in Chapter 5 page 5-160. For details on the ALG:FUNC:DEF
command, see page 6-201 in the Command Reference.

User defined functions are global in scope. A user function defined with
ALG:FUNC:DEF is available to all defined algorithms. Up to 32 functions
can be defined in the HP E1419A. You call your function with the syntax
<func_name>(<expression>). Example:

for user function pre-defined as square root with name ’sqrt’

O132 = sqrt(I100); /* channel 32 outputs square root of input channel 0’s value */

NOTE A user function must be defined (ALG:FUNC:DEF) before any algorithm is
defined (ALG:DEF) that references it.

Operating Sequence

This section explains another important factor in your algorithm’s execution
environment. Figure 4-2 shows the same overall sequence of operations that
you saw in Chapter 3, but also includes a block diagram to show you which
parts of the HP E1419A are involved in each phase of the control sequence.

Overall Sequence Here, the important things to note about this diagram are:

• All algorithm referenced input channel values are stored in the
Channel Input Buffer (Input Phase) BEFORE algorithms are
executed during the Calculate Phase.

• The execution of all defined algorithms (Calculate Phase) is
complete BEFORE output values from algorithms, stored in the

118 The Algorithm Language and Environment Chapter 4

4-2 Algorithm Operating Sequence Diagram

Chapter 4 The Algorithm Language and Environment 119

Channel Output Buffer, are used to update the output channel
hardware during the Output Phase.

In other words, algorithms don’t actually read inputs at the time they
reference input channels, and they don’t send values to outputs at the time
they reference output channels. Algorithms read channel values from an
input buffer, and write (and can read) output values to/from an output
buffer. Here are example algorithm statements to describe operation:

inp_val = I108; /* inp_val is assigned a value from input buffer element 8 */
O137 = 22.3; /* output buffer element 37 assigned the value 22.3 */
O133 = O132; /* output buffer [32] is read and assigned to output buffer [33] */

A Common
Error to Avoid

Since the "buffered input - algorithm execution - buffered output" sequence
is probably not a method many are familiar with, a programming mistake
associated with it is easy to make. Once you see it here, you won’t do this in
your programs. The following algorithm statements will help explain:

O156.B0 = 1; /* digital output bit on HP E1533 in SCP position 3 */
O156.B0 = 0;

Traditionally you expect the first of these two statements to set output
channel 56 bit 0 to a digital 1, then after the time it takes to execute the
second statement, the bit would return to a digital 0. Because both of these
statements are executed BEFORE any values are sent to the output
hardware, only the last statement has any effect. Even if these two
statements were in separate algorithms, the last one executed would
determine the output value. In this example the bit would never change. The
same applies to analog outputs.

Algorithm
Execution Order

The buffered I/O sequence explained previously can be used to advantage.
Multiple algorithms can access the very same buffered channel input value
without having to pass the value in a parameter. Any algorithm can read and
use as its input, the value that any other algorithm has sent to the output
buffer. In order for these features to be of use, you must know the order in
which your algorithms will be executed. When you define your algorithms,
you give them one of 32 pre-defined algorithm names. These range from
’ALG1’ to ALG32’. Your algorithms will execute in order of its name. For
instance if you define ’ALG5’, then ’ALG2’, then ’ALG8’, and finally
’ALG1’, when you run them, they will execute in the order ’ALG1’,
’ALG2’, ’ALG5’, and ’ALG8’.

Defining Algorithms (ALG:DEF)

This section discusses how to use the ALG:DEFINE command to define
algorithms. Later sections will discuss "what to define".

120 The Algorithm Language and Environment Chapter 4

ALG:DEFINE in the
Programming

Sequence

*RST erases all previously defined algorithms. You must erase all
algorithms before you begin to re-define them (except in the special case
described in "Changing an Algorithm While it’s Running" later in this
section).

ALG:DEFINE’s Two
Data Formats

For algorithms, the ALG:DEFINE ’<alg_name>’,’<source_code>’ command
sends the algorithm’s source code to the HP E1419A’s driver for translation to
executable code. The <source_code> parameter can be sent in one of three forms:

1. SCPI Quoted String: For short segments (single lines) of code,
enclose the code string within single (apostrophes), or double quotes.
Because of string length limitations within SCPI and some
programming platforms, we recommend that the quoted string length
not exceed a single program line. Example:

ALG:DEF ’ALG1’,’if(First_loop) O132=0; O132=O132+.01;’

2. SCPI Indefinite Length Block Program Data: This form terminates
the data transfer when it received an End Identifier with the last data
byte. Use this form only when you are sure your controller platform
will include the End Identifier. If it is not included, the ALG:DEF
command will "swallow" whatever data follows the algorithm code.
The syntax for this parameter type is:

#0<data byte(s)><null byte with End Identifier>

Example from "Quoted String" above:

ALG:DEF ’ALG1’,#0O132=I100;LF/EOI

where LF/EOI is a line-feed character sent with End Identifier true (EOI signal
for HP-IB)

NOTE for C-SCPI For Block Program Data, the Algorithm Parser requires that the
source_code data end with a null (0) byte. You must append the null byte to
the end of the block’s <data byte(s)>. If the null byte is not included within
the block, the error "Algorithm Block must contain termination ’\0’" will be
generated.

Chapter 4 The Algorithm Language and Environment 121

Changing an
Algorithm While

it’s Running

The HP E1419A has a feature that allows you to specify that a given
algorithm can be swapped with another even while it is executing. This is
useful if, for instance, you needed to alter the function of an algorithm that
is currently controlling a process and you don’t want to leave that process
uncontrolled. In this case, when you define the original algorithm, you can
enable it to be swapped.

Defining an Algorithm
for Swapping

The ALG:DEF command has an optional parameter that is used to enable
algorithm swapping. The command’s general form is:

ALG:DEF ’<alg_name>’[,<swap_size>],’<source_code>’

Note the parameter <swap_size>. With <swap_size> you specify the amount
of algorithm memory to allocate for algorithm <alg_name>. Make sure to
allocate enough space for the largest algorithm you expect to define for
<alg_name>. Here is an example of defining an algorithm for swapping:

define ALG3 so it can be swapped with an algorithm as large as 1000 words

ALG:DEF ’ALG3’,1000,#41698<1698char_alg_source>

NOTE The number of characters (bytes) in an algorithm’s <source_code>
parameter is not well related to the amount of memory space the algorithm
requires. Remember this parameter contains the algorithm’s source code,
not the executable code it will be translated into by the ALG:DEF
command. Your algorithm’s source might contain extensive comments,
none of which will be in the executable algorithm code after it is translated.

How Does it Work? We’ll use the example algorithm definition above for this discussion. When
you specify a value for <swap_size> at algorithm definition, the HP E1419A
allocates two identical algorithm spaces for ALG3, each the size specified
by <swap_size> (in this example 1000 words). This is called a "double
buffer". We’ll just call these space A and space B. The algorithm is loaded
into ALG3’s space A at first definition. Later, while algorithms are running
you can "replace" ALG3 by again executing

ALG:DEF ALG3,#42435<2435char_alg_source>

Notice that <swap_size> is not (must not be) included this time. This
ALG:DEF works like an Update Request. The HP E1419A translates and
downloads the new algorithm into ALG3’s space B while the old ALG3 is
still running from space A. When the new algorithm has been completely
loaded into space B and an ALG:UPDATE command has been sent, the
HP E1419A simply switches to executing ALG3’s new algorithm from
space B at the next Update Phase (see Figure 3-8). If you were to send yet
another ALG3, it would be loaded and executed from ALG3’s space A.

122 The Algorithm Language and Environment Chapter 4

Determining an
Algorithm’s Size

In order to define an algorithm for swapping, you will need to know how
much algorithm memory to allocate for it or any of its replacements. You
can query this information from the HP E1419A. Use the following
sequence:

1. Define the algorithm without swapping enabled. This will cause the
HP E1419A to allocate only the memory actually required by the
algorithm.

2. Execute the ALG:SIZE? <alg_name> command to query the amount
of memory allocated. You now know the minimum amount of
memory required for the algorithm.

3. Repeat 1 and 2 for each of the algorithms you want to be able to swap
with the original. From this you know the minimum amount of
memory required for the largest.

4. Execute *RST to erase all algorithms.

5. Re-define one of the algorithms with swapping enabled and specify
<swap_size> at least as large as the value from step 3 above (and
probably somewhat larger because as alternate algorithms declare
different variables, space is allocated for total of all variables
declared).

6. Swap each of the alternate algorithms for the one defined in step 5,
ending with the one you want to run now. Remember, you don’t send
the <swap_size> parameter with these. If you don’t get an
"Algorithm too big" error, then the value for <swap_size> in step 5
was large enough.

7. Define any other algorithms in the normal manner.

NOTES 1. Channels referenced by algorithms when they are defined, are only
placed in the channel list before INIT. The channel list cannot be
changed after INIT. If you re-define an algorithm (by swapping) after
INIT, and it references channels not already in the channel list, these
channels will only return a floating point zero. No error message will
be generated. To make sure all required channels will be included in
the channel list, define <alg_name> and re-define all algorithms that
will replace <alg_name> by swapping them before you send INIT.
This insures that all channels referenced in these algorithms will be
available after INIT.

2. The driver only calculates overall execution time for algorithms
defined before INIT. This calculation is used to set the default output
delay (same as executing ALG:OUTP:DELAY AUTO). If an
algorithm is swapped after INIT that take longer to execute than the

Chapter 4 The Algorithm Language and Environment 123

original, the output delay will behave as if set by ALG:OUTP:DEL
0, rather than AUTO (see ALG:OUTP:DEL command). Use the
same procedure from note 1 to make sure the longest algorithm
execution time is used to set ALG:OUTP:DEL AUTO before INIT.

The HP VEE example program "swap1419.vee" shows how to swap
algorithms while the module is running. See Chapter 5 page 172.

A Very Simple First Algorithm

This section will show you how to create and download an algorithm that
simply sends the value of an input channel to a CVT element. It includes an
example application program that configures the HP E1419A, downloads
(defines) the algorithm, starts and then communicates with the running
algorithm.

Writing the
Algorithm

The most convenient method of creating your algorithm is to use your text
editor or word processor to input the source code.

/* Example algorithm that calculates 4 Mx+B values upon
 * signal that sync == 1. Your application sets sync with the
 * SCPI command ALG:SCALAR
 * M and B terms are also set by application
 * program.
 */
 static float M, B, x, sync;
 if (First_loop) sync = 0;
 if (sync == 1) {

writecvt(M*x+B, 10);
writecvt(-(M*x+B), 11);
writecvt((M*x+B)/2,12);
writecvt(2*(M*x+B),13);
sync = 2;

 }

Running the
Algorithm

The supplied HP VEE example program "temp1419.vee" shows you how to
load and run algorithms. See Chapter 5 page 153.

124 The Algorithm Language and Environment Chapter 4

Non-Control Algorithms

Data Acquisition
Algorithm

The HP E1419A’s Algorithm Language includes intrinsic functions to write
values to the CVT, the FIFO, or both. Using these functions, you can create
algorithms that simply perform a data acquisition function. The following
example shows acquiring eight channels of analog input from SCP position
0, and one channel (8 bits) of digital input from an HP E1533 in SCP
position 7. The results of the acquisition are placed in the CVT and FIFO.

/* Data acquisition to CVT and FIFO */
writeboth(I100, 330); /* channel 0 to FIFO, and CVT element 330 */
writeboth(I101, 331); /* channel 1 to FIFO, and CVT element 331 */
writeboth(I102, 332); /* channel 2 to FIFO, and CVT element 332 */
writeboth(I103, 333); /* channel 3 to FIFO, and CVT element 333 */
writeboth(I104, 334); /* channel 4 to FIFO, and CVT element 334 */
writeboth(I105, 335); /* channel 5 to FIFO, and CVT element 335 */
writeboth(I106, 336); /* channel 6 to FIFO, and CVT element 336 */
writeboth(I107, 337); /* channel 7 to FIFO, and CVT element 337 */
writeboth(I156, 338); /* channel 56 to FIFO, and CVT element 338 */

Using SENS:DATA:FIFO: ... and the SENS:DATA:CVT commands, your
application program can access the data.

Process Monitoring
Algorithm

Another function the HP E1419A performs well is monitoring input values
and testing them against pre-set limits. If an input value exceeds its limit, the
algorithm can be written to supply an indication of this condition by
changing a CVT value, or even forcing a VXIbus interrupt. The following
example shows acquiring one analog input value from channel 0, and one
HP E1533 digital channel from channel 56, and limit testing them.

/* Limit test inputs , send values to CVT, and force interrupt when exceeded */
static float Exceeded; /* Exceeded is set by boolean operations to either 0 or 1 */
static float Max_chan0, Min_chan0, Max_chan1, Min_chan1;
static float Max_chan2, Min_chan2, Max_chan3, Min_chan3;
static float Mask_chan56;
if (First_loop) Exceeded = 0; /* initialize Exceeded on each INIT */
writecvt(I100, 330); /* write analog value to CVT */
Exceeded = ((I100 > Max_chan0) || (I100 < Min_chan0)); /* limit test analog */
writecvt(I101, 331); /* write analog value to CVT */
Exceeded = Exceeded + ((I101 > Max_chan1) || (I101 < Min_chan1));
writecvt(I102, 332); /* write analog value to CVT */
Exceeded = Exceeded + ((I102 > Max_chan2) || (I102 < Min_chan2));
writecvt(I103, 333); /* write analog value to CVT */
Exceeded = Exceeded + ((I103 > Max_chan3) || (I103 < Min_chan3));
writecvt(I156, 334); /* write 8-bit value to CVT */
Exceeded = Exceeded + (I156 != Mask_chan56); /* limit test digital */
If (Exceeded) interrupt();

Chapter 4 The Algorithm Language and Environment 125

Algorithm Language Reference

This section provides a summary of reserved keywords, operators, data
types, constructs, intrinsic functions and statements.

Standard Reserved
Keywords

The list of reserved keywords is the same as ANSI ’C’. You may not create
your own variables using these names. Note that the keywords that are
shown underlined and bold are the only ANSI ’C’ keywords that are
implemented in the HP E1419A.

auto double int struc

break else long switch

case enum register typeof

char extern return union

const float short unsigned

continue for signed void

default goto sizeof volatile

do if static while

NOTE While all of the ANSI ’C’ keywords are reserved, only those keywords that
are shown in bold are actually implemented in the HP E1419A.

Special HP E1419A
Reserved Keywords

The HP E1419A implements some additional reserved keywords. You may
not create variables using these names:

abs interrupt writeboth

Bn (n=0 through 9) max writecvt

Bnn (nn=10 through 15) min writefifo

Identifiers Identifiers (variable names) are significant to 31 characters. They can
include alpha, numeric, and the underscore character "_". Names must begin
with an alpha character, or the underscore character.

Alpha: a b c d e f g h i j k l m n o p q r s t u v w x y z
 A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

126 The Algorithm Language and Environment Chapter 4

Numeric: 0 1 2 3 4 5 6 7 8 9
Other: _

NOTE Identifiers are case sensitive. The names My_array and my_array reference
different identifiers.

Special Identifiers
for Channels

Channel identifiers appear as variable identifiers within the algorithm and
have a fixed, reserved syntax. The identifiers I100 to I163 specify input
channel numbers. The "I" must be upper case. They may only appear on the
right side of an assignment operator. The identifiers O100 to O163 specify
output channel numbers. The "O" must be upper case. They can appear on
either or both sides of the assignment operator.

NOTE Trying to declare a variable with a channel identifier will generate an error.

Operators The HP E1419A’s Algorithm Language supports the following operators:

Assignment Operator = (assignment) example; c = 1.2345

Arithmetic Operators + (addition) examples; c = a + b
- (subtraction) c = a - b
* (multiplication) c = a * b
/ (division) c = a / b

Unary Operators - (unary minus) c = a + (-b)
+ (unary plus) c = a + (+b)

Comparison Operators == (is equal to) examples; a == b
!= (is not equal to) a != b
< (is less than) a < b
> (is greater than) a > b
<= (is less than or equal to) a <= b
>= (is greater than or equal to) a >= b

Logical Operators || (or) examples; (a == b) || (a == c)
&& (and) (a == b) && (a == c)

Unary Logical Operator ! (not) example; !b

Chapter 4 The Algorithm Language and Environment 127

The result of a comparison operation is a boolean value. It is still a type
float but its value is either 0 (zero) if false, or 1 (one) if true. You may test
any variable with the if statement. A value of zero tests false, if any other
value it tests true. For example:

/* if my_var is other than 0, increment count_var */
 if(my_var) count_var=count_var+1;

Intrinsic Functions
and Statements

The following functions and statements are provided in the HP E1419A’s
Algorithm Language:

Functions:

abs(expression) return absolute value of expression
max(expression1,expression2) return largest of the two expressions
min(expression1,expression2) return smallest of the two expressions

Statements:

interrupt() sets VXI interrupt
writeboth(expression,cvt_loc) write expression result to FIFO

and CVT element specified.
writecvt(expression,cvt_loc) write expression result to CVT

element specified.
writefifo(expression) write expression result to FIFO.

Program Flow
Control

Program flow control is limited to the conditional execution construct using
if and else, and return. Looping inside an algorithm function is not
supported. The only "loop" is provided by repeatedly triggering the
HP E1419A. Each trigger event (either external, or internal Trigger Timer)
executes the main() function which calls each defined and enabled
algorithm function. There is no goto statement.

Conditional Constructs The HP E1419A Algorithm Language provides the if-else construct in the
following general form:

if (expression) statement1 else statement2
If expression evaluates to non-zero statement1 is executed. If expression
evaluates to zero, statement2 is executed. The else clause with its associated
statement2 is optional. Statement1 and/or statement2 can be compound
statement. That is { statement; statement; statement; ... }.

Exiting the Algorithm The return statement allows terminating algorithm execution before
reaching the end by returning control to the main() function. The return

128 The Algorithm Language and Environment Chapter 4

statement can appear anywhere in your algorithm. You are not required to
include a return statement to end an algorithm. The translator treats the end
of your algorithm as an implied return.

Data Types The data type for variables is always static float. However decimal constant
values without a decimal point or exponent character (".", "E", or "e"), as
well as Hex and Octal constants are treated as 32-bit integer values. This
treatment of constants is consistent with ANSI ’C’. To understand what this
can mean you must understand that not all arithmetic statements in your
algorithm are actually performed within the HP E1419A’s DSP chip at
algorithm run-time. Where expressions can be simplified, the HP E1419A’s
translator (a function of the driver invoked by ALG:DEF) performs the
arithmetic operations before downloading the executable code to the
algorithm memory in the HP E1419A. For example look at the statement;

a = 5 + 8;

When the HP E1419A’s translator receives this statement, it simplifies it by
adding the two integer constants (5 and 8) and storing the sum of these as
the float constant 13. At algorithm run-time, the float constant 13 is assigned
to the variable "a". No surprises so far. Now analyze this statement;

a = (3 / 4) * 12;

Again the translator simplifies the expression by performing the integer
divide for 3 / 4. This results in the integer value 0 being multiplied by 12
which results in the float constant 0.0 being assigned to the variable "a" at
run-time. This is obviously not what you wanted but is exactly what your
algorithm instructed.

You can avoid these subtle problems by specifically including a decimal
point in decimal constants where an integer operation is not what you want.
For example, if you had made either of the constants in the division above a
float constant by including a decimal point, the translator would have
promoted the other constant to a float value and performed a float divide
operation resulting in the expected 0.75 * 12, or the value 9.0 So the
statement;

a = (3. / 4) * 12;

will result in the value float 9.0 being assigned to the variable "a".

The Static Modifier All HP E11419A variables, local or global, must be declared as static. An
example:

static float gain_var, integer_var, deriv_var; /* three vars declared */

Chapter 4 The Algorithm Language and Environment 129

In ’C’, local variables that are not declared as static lose their values once
the function completes. The value of a local static variable remains
unchanged between calls to your algorithm. Treating all variables this way
allows your algorithm to "remember" its previous state. The static variable
is local in scope, but otherwise behaves as a global variable. Also note that
you may not declare variables within a compound statement.

Data Structures The HP E1419A Algorithm Language allows the following data structures:

• Simple variables of type float:
Declaration

static float simp_var, any_var;

Use
simp_var = 123.456;
any_var = -23.45;
Another_var = 1.23e-6;

Storage
Each simple variable requires four 16-bit words of memory.

• Single-dimensioned arrays of type float with a maximum of 1024
elements:
Declaration

static float array_var [3];

Use
array_var [0] = 0.1;
array_var [1] = 1.2;
array_var [2] = 2.34;
array_var [3] = 5;

Storage
Arrays are "double buffered". This means that when you declare
an array, twice the space required for the array is allocated, plus
one more word as a buffer pointer. The memory required is:

words of memory = (8 ∗ num_elements) + 1

This double buffered arrangement allows the ALG:ARRAY
command to download all elements of the array into the "B" buffer
while your algorithm is accessing values from the "A" buffer. Then
an ALG:UPDATE command will cause the buffer pointer word to
point to the newly loaded buffer between algorithm executions.

130 The Algorithm Language and Environment Chapter 4

Using Type Float in
Integer Situations

There are certain situations where you would normally use integers, but
with the HP E1419A you only have type float. This usually has to do with
writing values to digital SCP channels. With the HP E1533 Digital I/O SCP,
each channel (two per SCP) reads or writes 8 bits. With the HP E1534 and
HP 1536 SCPs, each channel (eight per SCP) reads or writes 1 bit. Note the
following behavior when sending values to digital channels:

• A floating point number sent to a digital channel is truncated to
integer by dropping any fractional portion. So, the value 234.8 sent
to an 8 bit channel will have the same effect as the integer value 234.
The value 0.8 sent to a 1 bit channel will be evaluated as 0. The value
1.9 becomes 1.

• The HP E1419A treats values sent to a digital channel as signed. that
is, negative and positive values are valid. Fore instance, -1 sent to an
HP E1533 Digital I/O channel sets all bits to one.

• A value sent to a digital channel that is greater than the channel’s bit
capacity is treated in a modulo(bit width) fashion. For an 8 bit
channel the formula is <channel value>MODULO 256. For example,
255 sent to an 8 bit channel sets all of its bits. But, 256 clears all
eight bits because 256 is a 9 bit value. The value 257 would then set
bit 0 (the 8 bit value 1).

One bit channels behave in the same way. The formula becomes
<channel value>MODULO 1. So the value 1 sent to a 1 bit channel
sets the bit, but the value 2 clears the bit. For 1 bit channels all odd
values set the bit while all even values clear the bit.

Bitfield Access The HP E1419A implements bitfield syntax that allows you to manipulate
individual bit values within a variable. This syntax is similar to what would
be done in ’C’, but doesn’t require a structure declaration. Bitfield syntax is
supported only for the lower 16 bits (bits 0-15) of simple (scalar) variables
and channel identifiers. Values read from or written to bitfields behave as
integer values as described in "Using Type Float in Integer Situations"
above.

Use
if(word_var.B0 || word_var.B3) /* if either bit 0 or bit 3 true ... */

word_var.B15 = 1; /* set bit 15 */

NOTES 1. You don’t have to declare a bitfield structure in order to use it. In the
Algorithm Language the bitfield structure is assumed to be applicable
to any simple variable including channel identifiers.

2. Unlike ’C’, the Algorithm Language allows you both bit access and
"whole" access to the same variable. Example:

Chapter 4 The Algorithm Language and Environment 131

static float my_word_var;
my_word_var = 255 /* set bits 0 through 7 */
my_word_var.B3 = 0 /* clear bit 3 */

Declaration
Initialization

You may only initialize simple variables (not array members) in the
declaration statement:

static float my_var = 2;

NOTE! The initialization of the variable only occurs when the algorithm is first
defined with the ALG:DEF command. The first time the algorithm is
executed (module INITed and triggered), the value will be as initialized. But
when the module is stopped (ABORT command), and then re-INITiated, the
variable will not be re-initialized but will contain the value last assigned
during program execution. In order to initialize variables each time the
module is re-INITialized, see "Determining First Execution" on page 4-115.

Global Variables To declare global variables you execute the SCPI command ALG:DEF
’GLOBALS’,<program_string>. The <program_string> can contain simple
variable and array variable declaration/initialization statements. The string
must not contain any executable source code.

Example global definition (for <program_string> less than 256 chars):

ALG:DEF ’GLOBALS’,’static float Scalar_global, Array_glob[10];’

Example global definition (for <program_string> gretater than 256 chars,
which requires the Indefinite Block Program Data format):

ALG:DEF ’GLOBALS’,#0static float Scalar_global, Array_glob[10].....LF/EOI

132 The Algorithm Language and Environment Chapter 4

Language Syntax Summary

This section documents the HP E1419A’s Algorithm Language elements.

Identifier:

first character is A-Z, a-z, or "_", optionally followed by characters;
A-Z, a-z, 0-9 or "_". Only the first 31 characters are significant. For
example; a, abc, a1, a12, a_12, now_is_the_time, gain1

Decimal Constant:

first character is 0-9 or "."(decimal point). Remaining characters if
present are 0-9, a "."(one only), a single "E"or"e", optional "+" or
"-", 0-9. For example; 0.32, 2, 123, 123.456, 1.23456e-2, 12.34E3

NOTE Decimal constants without a decimal point character are treated by
the translator as 32-bit integer values. See Data Types on page 4-129.

Hexadecimal Constant:

first characters are 0x or 0X. Remaining characters are 0-9 and A-F
or a-f. No "." allowed.

Octal Constant:

first character is 0. Remaining characters are 0-7. If ".", "e", or "E"
is found, the number is assumed to be a Decimal Constant as above.

Primary-expression:

constant
(expression)
scalar-identifier
scalar-identifier.bitnumber
array-identifier[expression]
abs(expression)
max(expression,expression)
min(expression,expression)

Chapter 4 The Algorithm Language and Environment 133

Bit-number:

Bn where n=0-9
Bnn where nn=10-15

Unary-expression:

primary-expression
unary-operator unary-expression

Unary-operator:

+
-
!

Multiplicative-expression:

unary-expression
multiplicative-expression multiplicative-operator unary-expression

Multiplicative-operator:

*
/

Additive-expression:

multiplicative-expression
additive-expression additive-operator multiplicative-expression

Additive-operator:

+
-

Relational-expression:

additive-expression
relational-expression relational-operator additive-expression

134 The Algorithm Language and Environment Chapter 4

Relational-operator:

<
>
<=
>=

Equality-expression:

relational-expression
equality-expression equality-operator relational-expression

Equality-operator:

==
!=

Logical-AND-expression:

equality-expression
logical-AND-expression && equality-expression

Expression:

logical-AND-expression
expression || logical-AND-expression

Declarator:

identifier
identifier [integer-constant-expression]
NOTE: integer-constant expression in array identifier above must
not exceed 1023

Init-declarator:

declarator
declarator = constant-expression
NOTES: 1. May not initialize array declarator.

2. Arrays limited to single dimension of 1024 maximum.

Init-declarator-list:

init-declarator
init-declarator-list , init-declarator

Chapter 4 The Algorithm Language and Environment 135

Declaration:

static float init-declarator-list;

Declarations:

declaration
declarations declaration

Intrinsic-statement:

interrupt ()
writefifo (expression)
writecvt (expression , constant-expression)
writeboth(expression , constant-expression)
return

Expression-statement:

scalar-identifier = expression ;
scalar-identifier . bit-number = expression ;
array-identifier [integer-constant expression] = expression ;
intrinsic-statement ;

Selection-statement:

if (expression) statement
if (expression) statement else statement

Compound-statement:

{ statement-list }
{ }
NOTE: Variable declaration not allowed in compound statement

Statement:

expression-statement
compound-statement
selection-statement

Statement-list:

statement
statement-list statement

136 The Algorithm Language and Environment Chapter 4

Algorithm-definition:

declarations statement-list
statement-list

Chapter 4 The Algorithm Language and Environment 137

Program Structure and Syntax

In this section you will learn the portion of the ’C’ programming language
that is directly applicable to the HP E1419A’ Algorithm Language. To do
this we will compare the ’C’ Algorithm Language elements with equivalent
BASIC language elements.

Declaring Variables In BASIC you usually use the DIM statement to name variables and allocate
space in memory for them. In the Algorithm Language you specify the
variable type and a list of variables:

BASIC ’C’
DIM a, var, array(3) static float a, var, array[3];

Here we declared three variables. Two simple variables; a, and var, and a
single dimensioned array; array.

Comments:

• Note that the ’C’ language statement must be terminated with the
semicolon ";".

• Although in the Algorithm Language all variables are of type float,
you must explicitly declare them as such.

• All variables in your algorithm are static. This means that each time
your algorithm is executed, the variables "remember" their values
from the previous execution. The static modifier must appear in the
declaration.

• Array variables must have a single dimension. The array dimension
specifies the number of elements. The lower bound is always zero (0)
in the Algorithm Language. Therefore the variable array from above
has three elements; array [0] through array[2].

Assigning Values BASIC and ’C’ are the same here. In both languages you use the symbol "="
to assign a value to a simple variable or an element of an array. The value
can come from a constant, another variable, or an expression. Examples:

a = 12.345;

a = My_var;

a = My_array[2];

a = (My_array[1] + 6.2) / My_var;

138 The Algorithm Language and Environment Chapter 4

NOTE In BASIC the assignment symbol "=" is also used as the comparison
operator "is equal to". For example; IF a=b THEN As you will read a
little further on, ’C’ uses a different symbol for this comparison.

The Operations
Symbols

Many of the operation symbols are the same, and are used the same way as
those in BASIC. However there are differences, and they can cause
programming errors until you get used to them.

The Arithmetic
Operators

The arithmetic operators available to the HP E1419A are the same as those
equivalents in BASIC:
+ (addition) - (subtraction)
* (multiplication) / (division)

Unary Arithmetic
Operator

Again same as BASIC:
- (unary minus) Examples:a = b + (-c)
+ (unary plus) a = c + (+b)

The Comparison
Operators

Here there are some differences.
 BASIC ’C’ Notes

 = (is equal to) == Different (hard to remember)
 <> or # (is not equal to) != Different but obvious
 > (is greater than) > Same
 < (is less than) > Same
 >= (is greater than or equal to) >= Same
 <= (is less than or equal to) <= Same

A common ’C’ programming error for BASIC programmers is to
inadvertently use the assignment operator "=" instead of the comparison
operator "==" in an if statement. Fortunately, the HP E1419A will flag this
as a Syntax Error when the algorithm is loaded.

The Logical Operators There are three operators. They are very different from those in BASIC.
BASIC Examples ’C’ Examples
AND IF A=B AND B=C && if((a == b)&&(b == c))

OR IF A=B OR A=C || if((a == b) || (a == c))

NOT IF NOT B ! if (! b)

Conditional
Execution

The HP E1419A Algorithm Language provides the if - else construct for
conditional execution. The following figure compares the elements of the
’C’ if - else construct with the BASIC if - then - else - end if construct. The
general form of the if - else construct is:

if(expression) statement1 else statement2
where statement1 is executed if expression evaluates to non-zero (true), and
statement2 is executed if expression evaluates to zero (false). Statement1

Chapter 4 The Algorithm Language and Environment 139

and/or statement2 can be compound statements. That is, multiple simple
statements within curly braces. See Figure 4-3

Note that in BASIC the boolean_expression is delimited by the IF and the
THEN keywords. In ’C’ the parentheses delimit the expression. In ’C’ , the
")" is the implied THEN. In BASIC the END IF keyword terminates a
multi-line IF. In ’C’, the if is terminated at the end of the following
statement when no else clause is present, or at the end of the statement
following the else clause. Figure 4-4 shows examples of these forms:

Note that in ’C’ "else" is part of the closest previous "if"statement. So the
example:
if(x) if(y) z = 1; else z = 2;

executes like: not like:
if(x){ if(x){

if(y){ if (y){
z = 1; z = 1;

} }
else{ }

z = 2; else{
} z = 2;

} }

Simplest form (used often)

Two-line form (not recommended; use
multiple line form instead)

Multiple line form (used often)

Multiple line form with else (used often)

Comments
if(boolean_expression) statement;

if(boolean_expression)
statement;

if(boolean_expression)
{

statement;
statement;
statement;

}

if(boolean_expression)
{

statement;
statement;

}
else
{

statement;
}

IF boolean_expression THEN statement

IF boolean_expression THEN
statement

END IF

IF boolean_expression THEN
statement
statement
statement

END IF

IF boolean_expression THEN
statement
statement

ELSE
statement

END IF

BASIC Syntax ’C’ Syntax

Figure 4-3 The if Statement ’C’ versus BASIC

140 The Algorithm Language and Environment Chapter 4

Comment Lines Probably the most important element of programming is the comment. In
older BASIC interpreters the comment line began with "REM" and ended at
the end-of-line character(s) (probably carriage return then linefeed). Later
BASICs allowed comments to also begin with various "shorthand"
characters such as "!", or "’". In all cases a comment ended when the
end-of-line is encountered. In ’C’ and the Algorithm Language, comments
begin with the the two characters "/*" and continue until the two characters
"*/" are encountered. Examples:

/* this line is solely a comment line */
if (a != b) c = d + 1; /* comment within a code line */
/* This comment is composed of more than one line.

The comment can be any number of lines long and
terminates when the following two characters appear

*/

About the only character combination that is not allowed within a comment
is "*/", since this will terminate the comment.

if(a <= 0) c=abs(a);

if(a != 0)
c = b / a;

if((a != b) && (a != c))
{

a = a * b;
b = b + 1;
c = 0;

}

if((a == 5) || (b == -5))
{

c = abs(c);
c = 2 / c;

}
else
{

c = a * b;
}

IF A<=0 THEN C=ABS(A)

IF A<>0 THEN
C=B/A

END IF

IF A<>B AND A<>C THEN
A=A*B
B=B+1
C=0

END IF

IF A=5 OR B=-5 THEN
C=ABS(C)
C= 2/C

ELSE
C= A*B

END IF

ExamplesBASIC Syntax ’C’ Syntax

Figure 4-4 Examples of ’C’ and BASIC if Statements

Chapter 4 The Algorithm Language and Environment 141

Overall Program
Structure

The preceding discussion showed the differences between individual
statements in BASIC and ’C’. Here we will show how the HP E1419A’s
Algorithm Language elements are arranged into a program.

Here is a simple example algorithm that shows most of the elements
discussed so far.

/* Example Algorithm to show language elements in the context of a complete
custom algorithm.

Program variables:

user_flag Set this value with the SCPI command ALG:SCALAR.
user_value Set this value with the SCPI command ALG:SCALAR.

Program Function:

Algorithm returns user_flag in CVT element 330 and another value in CVT element 331
each time the algorithm is executed.
When user_flag = 0, returns zero in CVT 331.
When user_flag is positive, returns user_value * 2 in CVT 331
When user_flag is negative, returns user_value / 2 in CVT 331 and in FIFO

Use the SCPI command ALGorithm:SCALar followed by ALGorithm:UPDate to set
user_flag and user_value.

*/
static float user_flag = 0; /* user_flag will be initialized to 0 when alg is defined, not when run */
static float user_value; /* Declaration statements (end with ;) */

writecvt (user_flag,330); /* Always write user_flag in CVT (statement ends with ;) */

if (user_flag) /* if statement (note no ;) */
{ /* brace opens compound statement */

if (user_flag > 0) writecvt (user_value * 2,331); /* one-line if statement (writecvt ends with ;) */
else /* else immediately follows complete if-statement construct */
{ /* open compound statement for else clause */

writecvt (user_value / 2,331); /* each simple statement ends in ; (even within compound) */
writefifo (user_value); /* these two statements could combine with writeboth () */

} /* close compound statement for else clause */
} /* close compound statement for first if */
else writecvt (0,331); /* else clause goes with first if statement. Note single line else */

142 The Algorithm Language and Environment Chapter 4

Chapter 5
HP VEE Programming Examples

About This Chapter

The focus of this chapter is to demonstrate a multitude of HP VEE
programming examples to help you get your E1419 application running as
quickly as possible. These examples are a combination of fully working
programs that demonstrate various capabilities of the E1419 plus HP VEE
object modules that you can merge into your HP VEE application to
perform such operations as calibration, error checking, testing, custom
functions, and custom EU conversion. Any operation or function that may
seem hard to implement with the E1419 has been included in the spirit of
HP VEE objects. You simply merge the examples and cut and paste what
you want. You’ll find yourself performing complex functions in a very
short period of time.

These example programs are written to run on any HP VEE 3.0+ platform.
This includes UNIX, Windows 3.1, Windows 95, and Windows NT. These
programs are primarily designed to run from an external computer
communicating over an HP-IB link to the HP E1405/6 Command Module.
The Command Module holds the E1419 driver which controls the E1419
VXI card. The E1419 VXI card comes pre-configured to LADD
208(HP-IB address 70926, for example).

These HP VEE programs are also viable for the E1415 Algorithmic Closed
Loop Control card since the programming architecture of both cards is very
similar. The E1415 provides greater flexibility and focuses more closely on
PID closed loop control applications. The E1419 is a more general
purpose/lower cost data acquisition and control system solution.

Chapter 5 HP VEE Programming Examples 143

The contents of this chapter are:

• Wiring Connections and File Locations for the Examples . .
147

• Virtual Front Panel Program: panl1419.vee
This program performs virtually all your calibration,
testing, and general wiring connection verification needs.
It’s a quick way to get your card up and running and
making measurements. You can set analog outputs, look
at all input channels, see your SCP configurations,
perform strip chart comparisons among any channels, and
log data to a disk. This program includes an HP VEE
4.0+ version that is compiled to load and run faster 148

• Calibration: cal_1419.vee
This program operates stand-alone. However, it is easy to
merge it directly into your own VEE application program
to provide easy access to the calibration sequence 151

• Functional Test: test1419.vee
This program operates stand-alone. However, it is easy to
merge it directly into your own VEE application program
to provide easy access to the card functional test sequence
. 152

• Programming Model Example: temp1419.vee
This program operates stand-alone. It is written to follow
the programming model outlined in Chapter 3. You will
find examples of writing multiple algorithms, variable
monitoring and modification, interrupts, temperature
measurements, and data display . 153

• Error Checking: err_1419.vee
This program operates stand-alone. However, it is
designed to be merged into your application program to
provide an object that can query every error stored in the
E1419’s error queue. It’s a good debugging tool 156
.

• Configuration Display: scp_1419.vee
This program operates stand-alone. However, it is
designed to be merged into your application program to
provide a means of displaying the driver and firmware
revisions and identify which SCP’s are loaded into the 8
SCP slots . 157

144 HP VEE Programming Examples Chapter 5

• Engineering Unit Conversion: eu_1419.vee
This program is designed to be merged into your
application program. It provides all the necessary objects
to permit custom EU conversion on any of the E1419’s
64 analog input channels. The program eufn1419.vee
demonstrates how to use this module 158

• Custom Function Generation: fn_1419.vee
This program is designed to be merged into your
application program. It provides all the necessary objects
to build up to 32 custom functions callable from E1419
algorithms. The program eufn1419.vee demonstrates how
to use this module . 160

• Custom EU and Custom Function: eufn1419.vee
This program operates stand-alone. It is designed to show
you how easy it is to generate complicated EU conversion
and Custom C functions by simply entering in channel
numbers, function names, and algebraic expressions. You
need to convert volts to pressure or perform a square-root
operation? You can use this program to see how easy it
is to perform . 162

• Curve Fitting and EU Generation: regr1419.vee
This program operates stand-alone. It shows how you
could use the HP VEE regression tools to generate a
polynomial equation to fit volts and pressure. The
generated equation can then be used in the eu_1419.vee
module for converting volts to pressure during data
acquisition of the E1419 . 164

• Interrupt Handling: intr1419.vee
This program operates stand-alone. This is an example
program that shows how to create multiple threads of
operation in HP VEE to respond to a FIFO half-full
interrupt. It teaches you the concepts of interrupt driven
programming. The example temp1419.vee also
incorporates a slightly different version of interrupt
processing that can enhance your learning 165

Chapter 5 HP VEE Programming Examples 145

• E1419 Simple Data Logger: dlgr1419.vee
This program operates stand-alone. It illustrates how to
configure the E1419 to collect data, store that data into its
FIFO, and retrieve that data for display on a strip chart
and optional logging to a file. This program can also be
used to read the stored data file "aichans" generated by
the panl1419.vee example, or you can use it to observe
previously stored data files created with this example.
This example can easily be modified to a more
complicated version or you can cut and paste the pieces
you need. An HP VEE 4.0+ compiled version is included
with your software . 167

• Modification of Variables and Arrays. updt1419.vee
This program operates stand-alone. This example shows
how operator interaction with running algorithms takes
place and how to download changes for both scalar and
array variables . 170

• Algorithm Modification: swap1419.vee
This program operates stand-alone. It shows you how to
modify algorithms while the E1419 is running. It includes
further examples on custom function generation 172

• Driver Download: drvr1419.vee
This program allows you to download the E1419 driver
and any other HP VXI drivers you might need into the
HP E1405/6 Command Module . 174

• Firmware Update Download: flsh1419.vee
This program allows you to save and reprogram the
FLASH memory of the E1419. 175

146 HP VEE Programming Examples Chapter 5

Wiring Connections and File Locations for the Examples

The following illustration shows the connections you should make to the
HP E1419A to allow the example programs in this chapter to operate as
described. For detailed information on connecting wiring to your
HP E1419A, see Chapter 2.

Example File
Location

The Supplied "HP Instrument Drivers" CD contains all of these example
programs stored in the HP VEE 3.0 compatibility mode. If you are using
HP VEE 4.0 or higher, you may want to compile those examples that would
benefit from the increased speed (panl1419.vee, temp1419.vee, and
swap1419.vee).
The Directory path to these examples is:

<cd drive letter>:\Dscpi\e1419\10322.dos\scpi_vee

Installing Example
Files

In order for the example programs to run they must be installed onto your
hard drive in directory C:\dabundle. The Dscpi\e1419\10322.dos\scpi_vee
directory mentioned above contains a batch file "install.bat" that will copy
the examples to C:\dabundle. Using your Windows system’s File Manager
or Explorer, open the CD directory Dscpi\e1419\10322.dos\scpi_vee and
double-click on "install.bat". You can then start HP VEE and load the
example programs.

Figure 5-1 Signal Connections for Examples

Chapter 5 HP VEE Programming Examples 147

Virtual Front Panel Program

panl1419.vee: This program performs virtually all your calibration, testing,
and general wiring connection verification needs. It’s a quick way to get
your card up and running and making measurements. You can set analog
outputs, look all input channels, see your SCP configurations, perform strip
chart comparisons among any channels, and log data to a disk.

The various sections illustrated in Figure 5-2 are described as follows:

A. After executing the RUN on HP VEE, a number of operations
will take place which analyzes the E1419’s configuration, sets up
SCP’s to make measurements, and prepares for data acquisition.
When the START becomes "LIT" or active, pressing START will

A

D

C

B

E

H G F

Figure 5-2 Virtual Front Panel Program

148 HP VEE Programming Examples Chapter 5

begin the processes of acquiring measurements on any and all
input SCP’s.

Analog input SCP’s display volts and digital input SCP’s display
digital state information in section F. Analog output SCP’s are
both input and output at the same time. Pressing STOP will
temporarily pause the acquisition of data.

B. This is the diagnostics section. You can RESET the card at any
time to stop measurement operations, calibration, or testing. The
CALIBRATE and TEST keys are not active while START in
section A is active. Likewise, neither CALIBRATE nor TEST
can be active at the same time. CALIBRATE should be
performed after the E1419 has warmed up for 1 hour. Calibration
is necessary whenever you add or move any SCP modules. TEST
allows you to check the integrity of any SCP channels. If errors
are present with either calibration or testing, indicators in section
D will be lit and CAL/Test Results? and ERROR? can be pressed
to determine what errors are present. Both TEST and
CALIBRATE may take from 3 to 10 minutes depending upon the
configuration of SCP’s. Also, CALIBRATE performs a
CAL:STORE ADC which stores the calibration constants in
non-volatile RAM.

C. These two display areas will indicate errors from calibration or
testing. You must press CAL/Test Results? or ERROR? to see the
results.

D. These are the status monitor lights. CARD is either IDLE, MEAS,
or BUSY, which indicates no operations pending, START active,
or performing CALIBRATION or TEST. CAL/TEST is either
OK or an ERR condition. If ERR, data will be present in section C.
ERROR is either OK or ERR which indicates the need to press the
ERROR? button.

E. This is the strip chart area. You can select up to 3 traces from any
of the input channels you see displayed in section F. Pressing
INPUT 1,2,3 will give you valid selections. The current channel
will be displayed next to the strip chart. Traces are colored. The
CLEAR button will erase all current traces. Auto Scale will
compress all current data into the available window. Update rates
vary with the processing power of your computer but can range
from sub-second to several second updates.

F. This is the section that displays the type of SCP and its channel
input values when START is active. Note that the beginning
channel number is displayed in the upper left corner of each SCP
window. Channel data is displayed as 0,1,2.... so you must add

Chapter 5 HP VEE Programming Examples 149

that designator to the upper left corner number to obtain the
actual channel number of the SCP.

G. This is the Analog Output selector. Pressing SELECT OUTPUT
will give you a list of all available analog output channels.
Choosing one will allow you to modify the output of any analog
output channel. Since all analog output SCP’s also display their
output values as input channels, you can see the results of
changing the output values in section F when START is active.
Please note that these output values are only accurate to within
10% of the programmed value. These are sanity check readings.
The actual output will be precisely what you programmed if you
have calibrated the E1419, and you can connect any analog
output to one of the analog input channels to see exactly what
values you are setting. When returning to a previously selected
output channel, the Analog Output slider will adjust itself to the
last programmed value you had when you selected another channel.

H. These two sections give you some added flexibility. Under the
Analog Output section you will see two buttons called STORE
and RECALL. Once you have programmed the values of all your
analog outputs, you can press the STORE button to save the output
states. If you press RESET or re-start this program later, you can
press RECALL to restore all those programmed values.

The LOG ON/OFF buttons will permit you to log the measurement results
from the first 32 analog input channels to a file named "aichans". Each time
you "RUN" this HP VEE example, this file is cleared. Successive ON/OFF
selections while START is active will append data to the file. To view this
data later, you can run the HP VEE program dlgr1419.vee and specify the
filename "aichans" as the Input Data File.

150 HP VEE Programming Examples Chapter 5

Calibration

cal_1419.vee: This program operates stand-alone. However, it is easy to
merge it directly into your own VEE application program to provide easy
access to the calibration sequence. The HP VEE detail view is all that is
developed as illustrated in Figure 5-3. A counter in the upper right-hand
section of the detail gives the number of seconds elapsed so you can see if
progress is being made.

This program performs a *CAL? and CAL:STORE ADC to perform a
complete calibration of the E1419 card. Any errors detected will be
displayed so you can identify exactly which channels may be in question.
Calibration may take from 3 to 10 or more minutes to occur, dependent
upon the number and type of SCP’s loaded.

Calibration should be performed whenever you move or add SCP’s, and you
should wait 1 hour after turn-ON for the E1419 to reach temperature
stabilization.

Figure 5-3 Calibration Detail View

Chapter 5 HP VEE Programming Examples 151

Function Test

test1419.vee: This program operates stand-alone. However, it is easy to
merge it directly into your own VEE application program to provide easy
access to the testing sequence. The HP VEE detail view is all that is
developed as illustrated in Figure 5-4. A counter in the upper right-hand
section of the detail gives the number of seconds elapsed so you can see if
progress is being made.

This program performs a *TST? Any errors detected will be displayed so
you can identify exactly which channels may be in question. Testing may
take from 3 to 10 or more minutes to occur, dependent upon the number and
type of SCP’s loaded.

Figure 5-4 Functional Test Detail View

152 HP VEE Programming Examples Chapter 5

Programming Model Example

temp1419.vee: This program operates stand-alone. It is written to follow the
programming model outlined in Chapter 3. You will find examples of
writing multiple algorithms, variable monitoring and modification,
interrupts, temperature measurements, and data display. Please refer to
Figure 5-5 for the remainder of the discussion.

The hardware configuration assumes you have a type T thermocouple
attached to channel 102, the thermocouple reference sensor attached to
channel 103, and a digital output channel at 156. Figure 5-1 illustrates the
necessary wiring connections for this and the other E1419/HP VEE
examples. Of particular interest here is that the thermocouple is placed at a
channel less than the reference junction channel. Since the E1419’s C
compiler sorts all channels in numerical order for scanning by the A/D at
runtime, you must override that assignment with the SENS:REF:CHAN
command as illustrated in Link Engineering Units so that the reference
channel is scanned BEFORE the thermocouple channel that needs the
reference junction compensation.

Figure 5-5 Programming Model Detail View

Chapter 5 HP VEE Programming Examples 153

The E1419 Algorithms are written inside HP VEE text boxes as a
1-dimension array of text lines. The Define Globals and Algorithms blocks
show how these text boxes are downloaded into the E1419. This makes
E1419 C program development very easy.

Note that there are two HP VEE threads of operation as indicated by the two
START icons. This means that proper operation will only take place if you
press the HP VEE ’RUN’ button. The Interrupt Handler simply waits for the
interrupt() routine in the E1419 to execute and assert the E1419’s VXI
interrupt line. The Interrupt Handler is simply monitoring the out-of-bound
condition of the card. If the card indicates the temperature of the
thermocouple rises above 30 degrees C, an interrupt is generated. The
interrupt is re-enabled after its occurrence. Please note in Algorithm 1 that
an interrupt is only allowed to occur once when passing through 30 degrees.
After which, the card DOES NOT interrupt again until the temperature falls
below 29 degrees and again passes through 30 degrees. This is done to
illustrate the concept of hysteresis applied to interrupts. If you were to allow
the E1419 to interrupt HP VEE constantly while above 30 degrees C, you
would bombard the external computer with interrupts which would lower
your overall performance. This technique achieves the needed signal to HP
VEE but adds the hysteresis to avoid constant interrupts.

CVT location 12 is used to reflect the state of the digital output channel used
to respond to the over-temperature condition. That condition is reflected
back to HP VEE as an LED.

Other interesting features include reading and writing of variables.
Algorithm 2 takes the global variable "card_running" and complements it
each time it executes. It then writes that value to CVT location 11.
Algorithms 2 has been configured by the ALG:SCAN:RATIO command to
execute every 500 triggers, as set in the Algorithms object. Since the trigger
timer is set to 2 milliseconds(Setup Trigger Subsystem), Algorithm 2
executes once every 1 second and thereby causes the card_running LED to
blink at 1 second intervals. This is a good sanity check for the HP VEE
program to know that the E1419 is running. If it had stopped for some
reason, the LED would not be flashing.

Another check to know that HP VEE is running is performed with the
Variable Access object. HP VEE reads the value of the global
"vee_running", increments it by one, and re-writes that value back to the
E1419. Although not included in this example, an algorithm could detect
that the variable was changing and know that HP VEE was still executing.
This might be a situation where if HP VEE were to be taken off-line or
stopped, the E1419 could detect the situation and begin a possible
shut-down of operations by itself.

154 HP VEE Programming Examples Chapter 5

Note that Algorithm 1 performs an average of 16 temperature readings
before writing the result to CVT location 10. Each time the algorithm
executes a check is performed to see if it has executed 16 times. If not, only
the sum and count is affected, and the routine exits prematurely. The
average is done to provide quieter readings when trying to make
temperature measurements at high speed with a non-filter/non-gain SCP.
This is a caution for you. High accuracy and low drift temperature
measurements are better with SCP’s that have gain and filtering. However,
you can get decent 1-3 degree C accuracy with the E1501 straight-through
SCP’s which is typically very reasonable for thermocouples.

You should spend some time opening each of the objects in this example
and see what SCPI commands are used and how they relate back to
concepts in Chapter 3. See Chapter 6 - the SCPI reference - for more
detailed information on each command.

Chapter 5 HP VEE Programming Examples 155

Error Checking

err_1419.vee: This program operates stand-alone. However, it is designed to
be merged into your application program to provide an object that will query
every error stored in the E1419’s error queue. It’s a good debugging tool
because it is self-contained. A good technique would be to turn this entire
object into a function that you call after each major programming object in
your application.

Figure 5-6 Error Checking Detail View

156 HP VEE Programming Examples Chapter 5

Configuration Display

scp_1419.vee: This program operates stand-alone. However, it is designed
to be merged into your application program to provide a means of
displaying the driver and firmware revisions and identify which SCP’s are
loaded into the 8 SCP slots. Just like the previous error checking example,
you can make this a callable function in HP VEE and insert it into your
application.

Figure 5-7 Configuration Display Detail View

Chapter 5 HP VEE Programming Examples 157

Engineering Unit Conversion

eu_1419.vee: This program is designed to be merged into your application
program. It provides all the necessary objects to build custom EU table
conversion on any of the E1419’s 64 input channels. The program
eufn1419.vee demonstrates how to use this module.

The HP VEE programming necessary to build the tables is somewhat
complex and beyond the scope of this text. In fact, there is an additional
program written in C that is called by this module: pc_eu.exe. Both the
source code for this program and the DOS executable are included with the
E1419 examples. The source code is provided so you can compile the
program on other platforms where HP VEE is supported: UNIX, etc. You
would issue command similar to "cc -Aa eu_141x.c -o unix_eu -lm" which
would compile the program under a typical UNIX environment. Note that
the name unix_eu and pc_eu have significant meaning to this module.

Figure 5-8 illustrates where this module would be integrated into your VEE
application program. This is a part of the Link Engineering Units setup you

Figure 5-8 Custom EU Conversion Detail View

158 HP VEE Programming Examples Chapter 5

learned in Chapter 3. You simply select the channel, the maximum voltage
you expect to see on that channel(MaxVolts represents +/- voltage), and
enter any formula using the available HP VEE math functions. It’s that
simple!

The only restriction is that you must use the variable "V" as representing the
voltage read from the channel. When the selected channel is read by the
E1419’s A/D, that voltage will be "inserted" into your formula just as
represented in the example. Appendix F discusses custom function table
generation which is based upon the same principle as EU table conversion.
EU conversion executes within a few microseconds, so there is no problem
with running the E1419 sample rate at 100kHz(10usec per sample).

The CustomEUDeclarationsArray can hold up to 64 channel definitions.
Any valid channel number 100-163 for an Analog Input Channel will cause
the associated table to be built and downloaded into the E1419’s EU table
memory space. Leaving the field Channel at "0" will cause that channel to
be ignored by this module. Any *RST or power-ON condition will require
re-execution of this module.

The object Select PC/UNIX Files contains file name and directory paths
necessary to make the module execute properly on PC’s or UNIX platforms.
Figure 5-8 also shows that object open for your observation. You can see
that the default location of the E1419 example programs is "c:\dabundle". A
typical UNIX path is included for example. The example uses the HP VEE
function whichOS() to determine which directory structure to use.

Chapter 5 HP VEE Programming Examples 159

Custom Function Generation

fn_1419.vee: This program is designed to be merged into your application
program. It provides all the necessary objects to build up to 32 C custom
functions callable from E1419 algorithms. The program eufn1419.vee
demonstrates how to use this module.

The HP VEE programming necessary to build the tables is somewhat
complex and beyond the scope of this text. In fact, there is an additional
program written in C that is called by this module: pc_fn.exe. Both the
source code for this program and the DOS executable are included with the
E1419 examples. The source code is provided so you can compile the
program on other platforms where HP VEE is supported: UNIX, etc. You
would issue command similar to "cc -Aa fn_141x.c -o unix_fn -lm" which
would compile the program under a typical UNIX environment. Note that
the name unix_fn and pc_fn have significant meaning to this module.

Figure 5-9 illustrates where this module would be integrated into your VEE
application program. This module must come after RESET and before any

Figure 5-9 Custom Function Generation

160 HP VEE Programming Examples Chapter 5

algorithm is defined that would use a function. You simply pick the name of
your function, the domain of input values(Minimum and Maximum), a
unique function number between 1 and 32, and the formula you wish to use
which includes any HP VEE math function. It’s that simple!

The only restriction is that you must use the variable "A" as representing the
value you will pass to the function from the C algorithm. When the function
is called, that value will be "inserted" into your formula just as represented
in the formula box.

Also note that the accuracy of this piece-wise linear table conversion
technique is highly dependent upon the non-linearity and domain over
which you try to build the tables. The table consists of 128 segments spread
over a binary representation of the domain limits. Appendix F gives some
background information on the capabilities and limitations of this
programming technique.

The FunctionDeclarationsArray can hold up to 32 function definitions. Any
valid function number 1-32 will cause the associated table to be built and
downloaded into the E1419’s function table memory space. A value of "0"
for any FuncNumber will cause that function to be ignored and not
downloaded. Any *RST or power-ON condition will require re-execution of
this module.

The object Select PC/UNIX Files contains file name and directory paths
necessary to make the module execute properly on PC’s or UNIX platforms.
Figure 5-8 of the previous example shows that object open for your
observation. You can see that the default location of the E1419 example
programs is "c:\dabundle". A typical UNIX path is included for example.
The example uses the HP VEE function whichOS() to determine which
directory structure to use.

Chapter 5 HP VEE Programming Examples 161

Custom EU/Function Example

eufn1419.vee: This program operates stand-alone. It is designed to show
you how easy it is to generate complicated EU conversion and Custom
functions by simply entering in channel numbers, function names, and
algebraic expressions. You need to convert volts to pressure or perform a
square-root operation? You can use this program to see how easy it is to
perform.

This program illustrates how to generate a sine wave from a custom
function that is then used to program an analog output. The analog output
(channel 132) is assumed wired to analog input channels 100 and 101.
Channel 101 is the straight voltage from channel 132, and channel 100 is the
same voltage but processed by the EU conversion formula for channel 100,
as defined in the CustomEUDeclarationArray. The EU conversion formula
simply takes the voltage read from channel 100, takes its absolute value, and
divides it by 2.

Figure 5-10 Custom EU/Function Example Detailed View

162 HP VEE Programming Examples Chapter 5

Notice that the domain of the sin_radians() function is limited to 0-6.3,
which represent a 0-2*PI interval. Each time the algorithm executes, it
writes the new value of O132 based upon the sin_radians() function with the
passed parameter "inc". "inc" is incremented once for each trigger since
each trigger causes the algorithm to execute. When "inc" exceeds 6.3, it is
set back to 0. Also note that the analog input voltages are sent to the FIFO
after each trigger. The object Collect Data retrieves the voltage pairs and
assembles them into a 2-dimension array which is then separated by Get
Channel 100 and Get Channel 101. The results are passed on to the X-Y
trace for display.

Chapter 5 HP VEE Programming Examples 163

Curve Fitting and EU Generation

regr1419.vee: This program operates stand-alone. It shows how you could
use the HP VEE regression tools to generate a polynomial equation to fit
volts and pressure. The generated equation can then be used in the
eu_1419.vee module for converting volts to pressure during data acquisition
of the E1419.

The "Fit To 4th Order Poly" object takes the data pairs entered into the
"Voltage vs. Pressure" text object and generates the coefficients that can be
entered into a 4th order polynomial. The coefficients are automatically
entered into the "4th Order Poly Formula" object and a dry-lab example of a
2.5 volt input to the formula results in the 49.5685 PSI output. This is what
the EU conversion would perform in the E1419 if you entered that 4th order
poly into the EU Conversion table object. You simply use the same formula
generated by this example along with the specified coefficients.

Figure 5-11 Curve Fitting and EU Generation

164 HP VEE Programming Examples Chapter 5

Interrupt Handling

intr1419.vee: This program operates stand-alone. This is an example
program that shows how to create multiple threads of operation in HP VEE
to respond to a FIFO half-full interrupt. It teaches you the concepts of
interrupt driven programming. The example temp1419.vee also incorporates
a slightly different version of interrupt processing that can enhance your
learning.

This example is really quite simple. It’s the technique of knowing how to set
up HP VEE to handle interrupts that is tricky. The Interrupt Handler has a
REPEAT loop connected directly to the Spoll object which monitors the
HP-IB waiting for the interrupt condition that was configured. The "Set Up
E1419" object shows the necessary SCPI commands to configure for an
interrupt, shows a simple algorithm that places readings into the FIFO, and
configures the trigger subsystem. All these topics are covered in Chapter 3
with details about the various SCPI commands in Chapter 6.

Figure 5-12 Interrupt Handling Detailed View

Chapter 5 HP VEE Programming Examples 165

The Interrupt Handler simply waits for the FIFO-HALF-FULL interrupt,
reads half the FIFO, displays the result or one reading, and re-enables the
condition once again. Once you understand this example, you will easily
understand how to handle other interrupts which are described in the Status
Subsystem section in Chapter 3. The example temp1419.vee is another
program you can load which shows interrupt handling.

166 HP VEE Programming Examples Chapter 5

Simple Data Logger Example

dlgr1419.vee: This program operates stand-alone. It illustrates how to
configure the E1419 to collect data, store that data into its FIFO, and
retrieve that data for display on a strip chart and optional logging to a file.
This program can also be used to read stored data files generated by both
this examples and the panl1419.vee example. The example can easily be
modified to a more complicated version or you can cut and paste the pieces
you need.

The first object, Setup/Configure, can be used to configure the E1419
trigger subsystem, SCP’s, and data formats. Since the E1419 comes
pre-configured with 4 analog input SCP’s in the first 4 slots, this example
will concentrate only on those channels and leave them configured for
voltage input. Since the example panl1419.vee also assumes this condition,
data stored by that example’s logging function can also be read by this
example. If desired, you can refer to the example temp1419.vee to see how
you can configure channels for temperature measurements using SCPI

Figure 5-13 Simple Data Logger

Chapter 5 HP VEE Programming Examples 167

commands. Chapter 3 also illustrates how to configure analog channels for
other measurements such as resistance, for example.

Note the "TRIG:TIMER 0.01" command will establish the scan trigger rate
at which measurements are taken and C algorithms are executed. This rate
was chosen purposely to illustrate the concept of slowing down data
acquisition at multiples of 10msec. Also note that the data format of
"FORM REAL,32" is used so the maximum rate can be achieved when
reading data from the FIFO.

The second object, Download Algorithm, illustrates how to download a C
program to access the channel variables for input measurements. This object
consists of a REPEAT loop with a count range to automatically generate 32
of the "writefifo(Ixx);" statements. The Ixx will range from I100-I131,
which represents each of the first 32 analog input channels. The only
function this algorithm will have is to read all 32 analog input values for
each scan trigger and place that data into the FIFO.

The Output and Input Data File text boxes allow you to specify names of
data files. The Output Data File assumes the working directory unless you
specify the entire path. This file will be cleared upon executing the "RUN"
key of HP VEE. If you have the LOG ON switch set, all data acquired will
be written to the specified data file. If you have selected the E1419 switch,
then data is acquired from the actual input channels. If you select FILE, data
is read from the specified Input Data File as though it were coming from the
input channels. The assumption is that this data file was created with this
example using the LOG ON mode or created with the logging function of
the example panl1419.vee. Note that both the LOG ON/OFF and the
FILE/E1419 switches come BEFORE the REPEAT loop. Therefore, you
cannot modify these parameters AFTER executing the "RUN".

The REPEAT provides the rate at which HP VEE can perform the following
actions:

• Reads the desired algorithm execution rate for storing data into the
FIFO.

• Reads the desired channels to display on the strip chart.
• Reads 10-scans(320 values) of data from the FIFO.
• Writes 10 readings for each selected channel to the strip chart.
• Reads the desired SCP channels to display a Current Value

Table(CVT) of data returned and displays that data.

The more operations you place in this loop, the more time you will place
between accesses to the FIFO. The execution speed of HP VEE is
dependent upon the speed of your computer is, how many I/O operations it
is performing, and whether or not you are using the Compiled mode of HP
VEE 4.0. If you are running a Pentium-class PC, the REPEAT loop will
easily keep up with the acquisition rate of the E1419 card and provide very

168 HP VEE Programming Examples Chapter 5

near real-time data on the strip chart. Slower computers may fall behind.
You can alter the TRIG:TIMER interval to slow down the acquisition rate
or move the slider control to slow down the rate of placing data into the
FIFO.

Note that you can select which SCP data you want to monitor on the
alphanumeric display. Each SCP can have up to 8 channels of analog input,
so selecting SCP 0-3 will allow you to see all 8 channels. The data displayed
is just one of the 10 readings acquired from the 320 FIFO readings.
Normally, the better choice is to use the E1419’s CVT and read that
directly; however, since the data was already read, adding the additional I/O
statement to fetch the 8 channels from the CVT is an unnecessary
performance slow-down for this application.

The four Integer input boxes labeled Input 1-4 allow you to specify which
channels you want to display on the strip chart. These are scanned as part of
the REPEAT loop that acquires the readings from the E1419 card. Ten
readings for each of the selected channels are fetched from the FIFO data
and sent to the strip chart.

The Cycle Time object allows you to slow down the rate at which data is
placed in the FIFO by the E1419’s C algorithm. The SCPI command
ALG:SCAN:RATIO is used to cause the C algorithm to skip execution
intervals established by the scan triggers. Since the "TRIG:TIMER 0.01"
command was issued during Setup/Configure, this slider will convert to
multiples of this rate. For example, if you select the Cycle Time of 0.04
seconds, then the C algorithm will only execute every 4 scan triggers.

The default 10msec interval of the scan trigger is also used in HP VEE’s
strip chart object. So, if you leave the Cycle Time set to 10msec and leave
the Step size to 10msec, the strip chart data will represent the actual data
acquisition time. If you modify the Cycle Time, you should also modify the
Step on the strip chart. Unfortunately, the Step is not one that can be
modified by adding an input terminal to the object. But, you can modify it in
real-time with your keyboard entry. Keep in mind that the new step value
will be assumed for all previous data too. Therefore, it’s best to select a rate,
program the Step value, and then "RUN" the HP VEE example for the most
accurate results.

Chapter 5 HP VEE Programming Examples 169

Modification of Variables and Arrays

updt1419.vee: This program operates stand-alone. This example shows
how operator interaction with running algorithms takes place and how to
download changes for both scalar and array variables.

Analog output channel 132 is assumed connected to analog input channel
100 for this example. Rather than use a custom function to generate the sine
wave, HP VEE’s function generator objects are used to generate a sine
wave, triangle wave, and square wave. There are three 100-element arrays
created that will be downloaded into the E1419’s memory, dependent upon
which waveform you want to generate. Algorithm 1 is expanded in the
picture above and shows how it sequences through the array "waveform" to
send values to the analog output. With each trigger cycle, Algorithm 1
executes and picks a value from the array dependent upon a counter
variable(i). The variable "inc" is used to increment the counter so elements
in the array can be skipped to generate a higher frequency waveform. Also
note in Algorithm 1 that the output value to O132 consists of both the
"waveform" array plus the variable "offset".

Figure 5-14 Example of Variable and Array Modification

170 HP VEE Programming Examples Chapter 5

The vertical slider controls the value of "offset" and the horizontal slider
controls the variable "inc". When the toggle switch is in the DDS(direct
digital synthesis) mode, the horizontal slider modifies "inc" to generate
lower resolution/higher frequency waveforms. When in the PPC(point per
cycle) mode, the slider modifies the ALG:SCAN:RATIO command of
Algorithm 1 to vary how many trigger cycles to wait before executing the
algorithm and writing different data to the output channel . This has the
effect of slowing down the waveform and lowering its frequency. Algorithm
2 simply copies each value of channel 132 to the FIFO every trigger cycle.
With Algorithm 1 only executing at some multiple of the trigger rate, there
will be repeated FIFO readings of the same value indicating a slower
frequency.

The "Offset/Frequency" object has the SCPI commands used to control the
scalar variable updates, and the object "Download Waveform" controls
writing to the array "waveform" in Algorithm 1.

Chapter 5 HP VEE Programming Examples 171

Algorithm Modification

swap1419.vee: This program operates stand-alone. It shows you how to
modify algorithms while the E1419 is running. It includes further
examples on custom function generation.

Analog output channel 132 is assumed connected to analog input channel
100 for this example. Rather than use a custom function to generate the sine
wave, HP VEE’s function generator objects are used to generate a sine
wave, triangle wave, and square wave. There are three 100-element arrays
created that will be downloaded into the E1419’s memory, dependent upon

Figure 5-15 Example of On-the-Fly Algorithm Changes

172 HP VEE Programming Examples Chapter 5

which waveform you want to generate. Algorithm 1 is expanded in the
picture above and shows how it sequences through the array "waveform" to
send values to the analog output. With each trigger cycle, Algorithm 1
executes and picks a value from the array dependent upon a counter
variable(i). The variable "inc" is used to increment the counter so elements
in the array can be skipped to generate a higher frequency waveform. Also
note in Algorithm 1 that the output value to O132 consists of both the
"waveform" array plus the variable "offset".

The vertical slider controls the value of "offset" and the horizontal slider
controls the variable "inc". When the toggle switch is in the DDS(direct
digital synthesis) mode, the horizontal slider modifies "inc" to generate
lower resolution/higher frequency waveforms. When in the PPC(point per
cycle) mode, the slider modifies the ALG:SCAN:RATIO command of
Algorithm 1 to vary how many trigger cycles to wait before executing the
algorithm and writing different data to the output channel . This has the
effect of slowing down the waveform and lowering its frequency. Algorithm
2 simply copies each value of channel 132 to the FIFO every trigger cycle.
With Algorithm 1 only executing at some multiple of the trigger rate, there
will be repeated FIFO readings of the same value indicating a slower
frequency.

The "Offset/Frequency" object has the SCPI commands used to control the
scalar variable updates, and the object "Download Waveform" controls
writing to the array "waveform" in Algorithm 1.

Chapter 5 HP VEE Programming Examples 173

Driver Download

drvr1419.vee: This program allows you to download the E1419 driver and
any other drivers you might need into the HP E1405/6 Command Module.
You specify the directory of where to find the driver files and the actual
driver files(.DU) you want downloaded into the E1405/6 Driver RAM. The
program will first list the drivers found in the E1405/6’s memory, and you
must press the CONTINUE button to proceed with the download.

Figure 5-16 Example of Command Module Driver Download

174 HP VEE Programming Examples Chapter 5

Firmware-Update Download

flsh1419.vee: This program allows you to save and reprogram the FLASH
memory of the E1419. Updating the flash memory for the E1419 is usually
a rare occurrence, but should a new revision become available, you can
download that new firmware into the E1419’s flash memory. To safe-guard
against the remote chance that the new flash causes you problems, the
program also allows you to save your old flash memory.

Figure 5-17 Example of Firmware (Flash) Download

Chapter 5 HP VEE Programming Examples 175

Notes

176 HP VEE Programming Examples Chapter 5

Chapter 6
HP E1419 Command Reference

Using This Chapter

This chapter describes the Standard Commands for Programmable Instruments
(SCPI) command set and the IEEE-488.2 Common Commands for the HP E1419.

• Overall Command Index . 177
• Command Fundamentals . 182
• SCPI Command Reference . 188
• Common Command Reference 316
• Command Quick Reference . 326

 Overall Command Index

SCPI Commands
ABORt . 189

ALGorithm[:EXPLicit]:ARRay <alg_name>,<array_name>,<block_data> 191

ALGorithm[:EXPLicit]:ARRay? <alg_name>,<array_name> . 192

ALGorithm[:EXPLicit]:DEFine <alg_name>,[<swap_enable>,<size>,]<source_code> 192

ALGorithm[:EXPLicit]:SCALar <alg_name>,<var_name>,<value> . 196

ALGorithm[:EXPLicit]:SCALar? <alg_name>,<var_name> . 197

ALGorithm[:EXPLicit]:SCAN:RATio <alg_name>,<value> . 197

ALGorithm[:EXPLicit]:SCAN:RATio? <alg_name> . 198

ALGorithm[:EXPLicit]:SIZe? <alg_name> . 199

ALGorithm[:EXPLicit][:STATe] <alg_name>,1 | 0 | ON | OFF . 199

ALGorithm[:EXPLicit][:STATe]? <alg_name> . 200

ALGorithm[:EXPLicit]:TIME? <alg_name> . 201

ALGorithm:FUNCtion:DEFine <func_name>,<range>,<offset>,<func_data> 201

ALGorithm:OUTPut:DELay <delay> | AUTO . 203

ALGorithm:OUTPut:DELay? . 204

ALGorithm:UPDate[:IMMediate] . 204

ALGorithm:UPDate:CHANnel (@<channel>) . 205

ALGorithm:UPDate:WINDow <num_updates> . 206

ALGorithm:UPDate:WINDow? . 207

ARM[:IMMediate] . 209

ARM:SOURce BUS | EXT | HOLD | IMM | SCP | TTLTrg<n> . 209

ARM:SOURce? . 210

CALibration:CONFigure:RESistance . 212

Chapter 6 HP E1419 Command Reference 177

CALibration:CONFigure:VOLTage <range>

CALibration:SETup . 214

CALibration:SETup? . 214

CALibration:STORe ADC | TARE . 215

CALibration:TARE (@<ch_list>) . 216

CALibration:TARE:RESet . 218

CALibration:TARE? . 218

CALibration:VALue:RESistance <ref_ohms> . 219

CALibration:VALue:VOLTage <ref_volts> . 219

CALibration:ZERO? . 220

DIAGnostic:CALibration:SETup[:MODE] 0 | 1 . 223

DIAGnostic:CALibration:SETup[:MODE]? . 223

DIAGnostic:CALibration:TARE[:OTDetect][:MODE] 0 | 1 . 224

DIAGnostic:CALibration:TARE[:OTDetect][:MODE]? . 224

DIAGnostic:CHECksum? . 225

DIAGnostic:CUStom:LINear <table_range>,<table_block>,(@<ch_list>) 225

DIAGnostic:CUStom:PIECewise <table_range>,<table_block>,(@<ch_list>) 226

DIAGnostic:CUSTom:REFerence:TEMPerature . 226

DIAGnostic:IEEE 0 | 1 . 227

DIAGnostic:IEEE? . 227

DIAGnostic:INTerrupt[:LINe] <int_line> . 228

DIAGnostic:INTerrupt[:LINe]? . 228

DIAGnostic:OTDetect[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) . 228

DIAGnostic:OTDetect[:STATe]? (@<channel>) . 229

DIAGnostic:QUERy:SCPREAD? <reg_addr> . 230

DIAGnostic:VERSion? . 230

FETCh? . 231

FORMat[:DATA] <format>[,<size>] . 233

FORMat[:DATA]? . 234

INITiate[:IMMediate] . 236

INPut:DEBounce:TIME <time>,(@<ch_list>) . 237

INPut:FILTer[:LPASs]:FREQuency <cutoff_freq>,(@<ch_list>) . 238

INPut:FILTer[:LPASs]:FREQuency? (@<channel>) . 239

INPut:FILTer[:LPASs][:STATe] 1 | 0 | ON | OFF,(@<ch_list>) . 240

INPut:FILTer[:LPASs][:STATe]? (@<channel>) . 240

INPut:GAIN <chan_gain>,(@<ch_list>) . 241

INPut:GAIN? (@<channel>) . 242

INPut:LOW <wvolt_type>,(@<ch_list>) . 242

INPut:LOW? (@<channel>) . 243

INPut:POLarity NORMal | INverted,(@<ch_list>) . 243

INPut:POLarity? (@<channel>) . 243

INPut:THReshold:LEVel? (@<channel>) . 244

178 HP E1419 Command Reference Chapter 6

MEMory:VME:ADDRess <A24_address> . 246

MEMory:VME:ADDRess? . 246

MEMory:VME:SIZE <mem_size> . 246

MEMory:VME:SIZE? . 247

MEMory:VME:STATe 1 | 0 | ON | OFF . 247

MEMory:VME:STATe? . 248

OUTPut:CURRent:AMPLitude <amplitude>,(@<ch_list>) . 249

OUTPut:CURRent:AMPLitude? (@<channel>) . 250

OUTPut:CURRent[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) . 251

OUTPut:CURRent[:STATe]? (@<channel>) . 251

OUTPut:POLarity NORMal | INVerted,(@<ch_list>) . 252

OUTPut:POLarity? (@<channel>) . 252

OUTPut:SHUNt 1 | 0,(@<ch_list>) . 253

OUTPut:SHUNt? (@<channel>) . 253

OUTPut:TTLTrg:SOURce ALGorithm | FTRigger | SCPlugon | TRIGger 254

OUTPut:TTLTrg:SOURce? . 254

OUTPut:TTLTrg<n>[:STATe] 1 | 0 | ON | OFF . 255

OUTPut:TTLTrg<n>[:STATe]? . 255

OUTPut:TYPE PASSive | ACTive,(@<ch_list>) . 255

OUTPut:TYPE? (@<channel>) . 256

OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>) . 256

OUTPut:VOLTage:AMPLitude? (@<channel>) . 257

ROUTe:SEQuence:DEFine? AIN | AOUT | DIN | DOUT . 258

ROUTe:SEQuence:POINts? AIN | AOUT | DIN | DOUT . 259

SAMPle:TIMer <interval> . 260

SAMPle:TIMer? . 260

[SENSe:]CHANnel:SETTling <settle_time>,(@<ch_list>) . 263

[SENSe:]CHANnel:SETTling? (@<channel>) . 264

[SENSe:]DATA:CVTable? (@<element_list>) . 264

[SENSe:]DATA:CVTable:RESet . 265

[SENSe:]DATA:FIFO[:ALL]? . 266

[SENSe:]DATA:FIFO:COUNT? . 266

[SENSe:]DATA:FIFO:COUNT:HALF? . 267

[SENSe:]DATA:FIFO:HALF? . 267

[SENSe:]DATA:FIFO:MODE BLOCk | OVERwrite . 268

[SENSe:]DATA:FIFO:MODE? . 269

[SENSe:]DATA:FIFO:PART? <n_readings> . 269

[SENSe:]DATA:FIFO:RESet . 270

[SENSe:]FREQuency:APERture <gate_time>,(@<ch_list>) . 270

[SENSe:]FREQuency:APERture? (@<channel>) . 271

[SENSe:]FUNCtion:CONDition (@<ch_list>) . 271

[SENSe:]FUNCtion:CUSTom [<range>,](@<ch_list>) . 272

Chapter 6 HP E1419 Command Reference 179

[SENSe:]FUNCtion:CUSTom:REFerence [<range>,](@<ch_list>) . 273

[SENSe:]FUNCtion:CUSTom:TCouple <type>,[<range>,](@<ch_list>) 274

[SENSe:]FUNCtion:FREQuency (@<ch_list>) . 275

[SENSe:]FUNCtion:RESistance <excite_current>,[<range>,] @<ch_list>) 275

[SENSe:]FUNCtion:STRain:FBENding [<range>,](@<ch_list>) . 277

[SENSe:]FUNCtion:STRain:FBPoisson [<range>,](@<ch_list>) . 277

[SENSe:]FUNCtion:STRain:FPOisson [<range>,](@<ch_list>) . 277

[SENSe:]FUNCtion:STRain:HBENding [<range>,](@<ch_list>) . 277

[SENSe:]FUNCtion:STRain:HPOisson [<range>,](@<ch_list>) . 277

[SENSe:]FUNCtion:STRain[:QUARter] [<range>,](@<ch_list>) . 277

[SENSe:]FUNCtion:TEMPerature <sensor_type>,<sub_type>,[<range>,] (@<ch_list>) 278

[SENSe:]FUNCtion:TOTalize (@<ch_list>) . 280

[SENSe:]FUNCtion:VOLTage[:DC] [<range>,](@<ch_list>) . 280

[SENSe:]REFerence <sensor_type>,[<sub_type>,][<range>,] (@<ch_list>) 281

[SENSe:]REFerence:CHANnels (@<ref_channel>),(@<tc_channels>) . 283

[SENSe:]REFerence:TEMPerature <degrees_c> . 284

[SENSe:]STRain:EXCitation <excite_v>,(@<ch_list>) . 284

[SENSe:]STRain:EXCitation? (@<channel>) . 285

[SENSe:]STRain:GFACtor <gage_factor>,(@<ch_list>) . 285

[SENSe:]STRain:GFACtor? (@<channel>) . 286

[SENSe:]STRain:POISson <poisson_ratio>,(@<ch_list>) . 286

[SENSe:]STRain:POISson? (@<channel>) . 287

[SENSe:]STRain:UNSTrained <unstrained_v>,(@<ch_list>) . 287

[SENSe:]STRain:UNSTrained? (@<channel>) . 288

[SENSe:]TOTalize:RESet:MODE INIT | TRIGger,(@<ch_list>) . 288

[SENSe:]TOTalize:RESet:MODE? (@<channel>) . 289

SOURce:FM[:STATe] 1 | 0 | O | OFF,(@<ch_list>) . 290

SOURce:FM[:STATe]? (@<channel>) . 291

SOURce:FUNCtion:[SHAPe:]CONDition (@<ch_list>) . 291

SOURce:FUNCtion:[SHAPe:]PULSe (@<ch_list>) . 292

SOURce:FUNCtion:[SHAPe:]SQUare (@<ch_list>) . 292

SOURce:PULM[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) . 292

SOURce:PULM[:STATe]? (@<channel>) . 293

SOURce:PULSe:PERiod <period>,(@<ch_list>) . 293

SOURce:PULSe:PERiod? (@<channel>) . 294

SOURce:PULSe:WIDth <width>,(@<ch_list>) . 294

SOURce:PULSe:WIDth? (@<channel>) . 294

STATus:OPERation:CONDition? . 298

STATus:OPERation:ENABle <enable_mask> . 299

STATus:OPERation:ENABle? . 300

STATus:OPERation[:EVENt]? . 300

STATus:OPERation:NTRansition <transition_mask> . 300

STATus:OPERation:NTRansition? . 301

STATus:OPERation:PTRansition <transition_mask> . 301

180 HP E1419 Command Reference Chapter 6

STATus:OPERation:PTRansition? . 302

STATus:PRESet . 302

STATus:QUEStionable:CONDition? . 303

STATus:QUEStionable:ENABle <enable_mask> . 304

STATus:QUEStionable:ENABle? . 304

STATus:QUEStionable[:EVENt]? . 305

STATus:QUEStionable:NTRansition <transition_mask> . 305

STATus:QUEStionable:NTRansition? . 306

STATus:QUEStionable:PTRansition <transition_mask> . 306

STATus:QUEStionable:PTRansition? . 307

SYSTem:CTYPe? (@<channel>) . 308

SYSTem:ERRor? . 308

SYSTem:VERSion? . 309

TRIGger:COUNt <trig_count> . 312

TRIGger:COUNt? . 312

TRIGger[:IMMediate] . 313

TRIGger:SOURce BUS | EXT | HOLD | IMM | SCP | TIMer | TTLTrg<n> 313

TRIGger:SOURce? . 314

TRIGger:TIMer[:PERiod] <trig_interval> . 314

TRIGger:TIMer[:PERiod]? . 315

Common Commands
*CAL? . 316

*CLS . 317

*DMC <name>,<cmd_data> . 317

*EMC <enable> . 317

*EMC? . 317

*ESE . 317

*ESE? . 318

*ESR? . 318

*GMC? <name> . 318

*IDN? . 318

*LMC? . 319

*OPC . 319

*OPC? . 319

*PMC . 320

*RMC <name> . 320

*RST . 320

*SRE . 321

*SRE? . 321

*STB? . 321

*TRG . 321

*TST? . 322

*WAI . 325

Chapter 6 HP E1419 Command Reference 181

Command Fundamentals

Commands are separated into two types: IEEE-488.2 Common Commands and
SCPI Commands. The SCPI command set for the HP E1419 is 1990 compatible

Common
Command

Format

The IEEE-488.2 standard defines the Common commands that perform functions
like reset, self-test, status byte query, etc. Common commands are four or five
characters in length, always begin with the asterisk character (*), and may include
one or more parameters. The command keyword is separated from the first
parameter by a space character. Some examples of Common commands are:

*RST
*ESR 32
*STB?

SCPI
Command

Format

The SCPI commands perform functions like configuring channels, setting up the
trigger system, and querying instrument states or retrieving data. A subsystem
command structure is a hierarchical structure that usually consists of a top level (or
root) command, one or more lower level commands, and their parameters. The
following example shows part of a typical subsystem:

MEMory
:VME

:ADDRess <A24_address>
:ADDRess?
:SIZE <mem_size>
:SIZE?

MEMory is the root command, :VME is the second level command, and :ADDRess,
and SIZE are third level commands.

Command
Separator

A colon (:) always separates one command from the next lower level command as
shown below:

ROUTE:SEQUENCE:DEFINE?

Colons separate the root command from the second level command
(ROUTE:SEQUENCE) and the second level from the third level
(SEQUENCE:DEFINE?). If parameters are present, the first is separated from the
command by a space character. Additional parameters are separated from each other
by a commas.

Abbreviated
Commands

The command syntax shows most commands as a mixture of upper and lower case
letters. The upper case letters indicate the abbreviated spelling for the command. For
shorter program lines, send the abbreviated form. For better program readability,
send the entire command. The instrument will accept either the abbreviated form or
the entire command.

182 HP E1419 Command Reference Chapter 6

For example, if the command syntax shows SEQuence, then SEQ and
SEQUENCE are both acceptable forms. Other forms of SEQuence, such as
SEQUEN or SEQU will generate an error. You may use upper or lower case
letters. Therefore, SEQUENCE, sequence, and SeQuEnCe are all acceptable.

Implied
Commands

 Implied commands are those which appear in square brackets ([]) in the command
syntax. (Note that the brackets are not part of the command, and are not sent to the
instrument.) Suppose you send a second level command but do not send the
preceding implied command. In this case, the instrument assumes you intend to use
the implied command and it responds as if you had sent it. Examine the INITiate
subsystem shown below:

INITiate
[:IMMediate]

The second level command :IMMediate is an implied command. To set the
instrument’s trigger system to INIT:IMM, you can send either of the following
command statements:

INIT:IMM or INIT

Variable
Command Syntax

Some commands will have what appears to be a variable syntax. As an example:
OUTPut:TTLTrg<n>:STATe ON

In these commands, the "<n>" is replaced by a number. No space is left between the
command and the number because the number is not a parameter. The number is
part of the command syntax. The purpose of this notation is to save a great deal of
space in the Command Reference. In the case of …TTLTrg<n>…, n can be from 0
through 7. An example command statement:

OUTPUT:TTLTRG2:STATE ON

Parameters Parameter Types. The following section contains explanations and examples of
parameter types you will see later in this chapter.

Parameter Types Explanations and Examples

Numeric Accepts all commonly used decimal representations of
numbers including optional signs, decimal points, and
scientific notation:
123, 123E2, -123, -1.23E2, .123, 1.23E-2, 1.23000E-01.
Special cases include MIN, MAX, and INFinity.

 A parameter that represents units may also include a
units suffix. These are:

Volts; V, mv=10-3, uv=10-6

Chapter 6 HP E1419 Command Reference 183

Ohms; ohm, kohm=103, mohm=106

Seconds; s, msec=10-3, usec=10-6

Hertz; hz, khz=103, mhz=106, ghz=109

The Comments section within the Command Reference
will state whether a numeric parameter can also be specified
in hex, octal, and/or binary.

#H7B, #Q173, #B1111011

Boolean Represents a single binary condition that is either
true or false.

ON, OFF, 1, 0.

Discrete Selects from a finite number of values. These parameters
use mnemonics to represent each valid setting.

An example is the TRIGger:SOURce <source> command
where <source> can be BUS, EXT, HOLD, IMM, SCP,
TIMer, or TTLTrg<n>.

Channel List The general form of a single channel specification is:
ccnn

where cc represents the card number and nn represents the
channel number.

Since the HP E1419 has an on-board 64 channel multiplexer,
the card number will be 1 and the channel number can range
from 00 to 63. Some example channel specifications:

channel 0=100, channel 5=105, channel 54=154

The General form of a channel range specification is:
ccnn:ccnn (colon separator)

(the second channel must be greater than the first)
Example:

channels 0 through 15=100:115

By using commas to separate them, individual and range
specifications can be combined into a single channel list:

0, 5, 6 through 32, and 45=(@100,105,106:132,145)

Note that a channel list is always contained within "(@" and ")".
The Command Reference always shows the "(@" and ")"
punctuation:

(@<ch_list>)

184 HP E1419 Command Reference Chapter 6

Arbitrary Block This parameter or data type is used to transfer a block of data in
Program and the form of bytes. The block of data bytes is preceded by a
Response Data preamble which indicates either 1) the number of data bytes

which follow (definite length), or 2) that the following data block
will be terminated upon receipt of a New Line message, and for
HP-IB operation, with the EOI signal true (indefinite length).
The syntax for this parameter is:

Definite Length #<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and represents the
number of <digit(s)>. The value of <digit(s)> taken as
a decimal integer indicates the number of <data byte(s)>
in the block.

Example of sending or receiving 1024 data bytes:
#41024<byte><byte1><byte2><byte3><byte4>…
…<byte1021><byte1022><byte1023><byte1024>

OR

Indefinite Length #0<data byte(s)><NL^END>

Examples of sending or receiving 4 data bytes:
#0<byte><byte><byte><byte><NL^END>

Optional Parameters. Parameters shown within square brackets ([]) are optional
parameters. (Note that the brackets are not part of the command, and should not be
sent to the instrument.) If you do not specify a value for an optional parameter, the
instrument chooses a default value. For example, consider the
FORMAT:DATA <type>[,<length>] command. If you send the command without
specifying <length>, a default value for <length> will be selected depending on the
<type> of format you specify. For example:

FORMAT:DATA ASC will set [,<length>] to the default for ASC of 7
FORMAT:DATA REAL will set [,<length>] to the default for REAL of 32
FORMAT:DATA REAL, 64 will set [,<length>] to 64

Be sure to place a space between the command and the first parameter.

Linking
Commands

Linking commands is used when you want to send more than one complete
command in a single command statement.

Linking IEEE-488.2 Common Commands with SCPI Commands. Use a semicolon
between the commands. For example:

Chapter 6 HP E1419 Command Reference 185

*RST;OUTP:TTLT3 ON or TRIG:SOUR IMM;*TRG

Linking Multiple complete SCPI Commands. Use both a semicolon and a colon
between the commands. For example:

OUTP:TTLT2 ON;:TRIG:SOUR EXT

The semicolon as well as separating commands tells the SCPI parser to expect the
command keyword following the semicolon to be at the same hierarchical level (and
part of the same command branch) as the keyword preceding the semicolon. The
colon immediately following the semicolon tells the SCPI parser to reset the
expected hierarchical level to Root.

Linking a complete SCPI Command with other keywords from the same branch and
level. Separate the first complete SCPI command from next partial command with
the semicolon only. For example take the following portion of the [SENSE]
subsystem command tree (the FUNCtion branch):

[SENSe:]
FUNCtion

:RESistance <range>,(@<ch_list>)
:TEMPerature <sensor>[,<range>,](@<ch_list>)
:VOLTage[:DC] [<range>,](@<ch_list>)

Rather than send a complete SCPI command to set each function, you could send:

FUNC:RES 10000,(@100:107);TEMP RTD, 92,(@108:115);VOLT (@116,123)

This sets the first 8 channels to measure resistance, the next 8 channels to measure
temperature, and the next 8 channels to measure voltage.

NOTE The command keywords following the semicolon must be from the same command
branch and level as the complete command preceding the semicolon or a
-113,"Undefined header" error will be generated.

186 HP E1419 Command Reference Chapter 6

C-SCPI Data
Types

The following table shows the allowable type and sizes of the C-SCPI parameter
data sent to the module and query data returned by the module. The parameter and
returned value type is necessary for programming and is documented in each
command in this chapter.

Data Types Description

int16 Signed 16-bit integer number.

int32 Signed 32-bit integer number.

uint16 Unsigned 16-bit integer number.

uint32 Unsigned 32-bit integer number.

float32 32-bit floating point number.

float64 64-bit floating point number.

string String of characters (null terminated)

Chapter 6 HP E1419 Command Reference 187

SCPI Command Reference

The following section describes the SCPI commands for the HP E1419. Commands
are listed alphabetically by subsystem and also within each subsystem. A command
guide is printed in the top margin of each page. The guide indicates the current
subsystem on that page.

188 HP E1419 Command Reference Chapter 6

ABORt

The ABORt subsystem is a part of the HP E1419’s trigger system. ABORt resets the
trigger system from its Wait For Trigger state to its Trigger Idle state.

Subsystem Syntax ABORt

CAUTION! ABORT stops execution of a running algorithm. The control output is left at the last
value set by the algorithm. Depending on the process, this uncontrolled situation
could even be dangerous. Make certain that you have put your process into a safe
state before you halt execution of a controlling algorithm.

Comments • ABORt does not affect any other settings of the trigger system. When the INITiate
command is sent, the trigger system will respond just as it did before the ABORt
command was sent.

• Related Commands: INITiate[:IMMediate], TRIGger…

• *RST Condition: TRIG:SOUR HOLD

Usage ABORT If INITed, goes to Trigger Idle state. If
running algorithms, stops and goes to
Trigger Idle State.

Chapter 6 HP E1419 Command Reference 189

ALGorithm

The ALGorithm command subsystem provides:

• Definition of measurement and control algorithms

• Communication with algorithm array and scalar variables

• Controls to enable or disable individual algorithms

• Control of ratio of number of scan triggers per algorithm execution

• Control of algorithm execution speed

• Easy definition of algorithm data conversion functions

Subsystem Syntax ALGorithm
[:EXPLicit]

:ARRay <alg_name>,<array_name>,<block_data>
:ARRay? <alg_name>,<array_name>
:DEFine <alg_name>[,<swap_size>],<program_block>
:SCALar <alg_name>,<var_name>,<value>
:SCALar? <alg_name>,<var_name>
:SCAN:RATio <alg_name>,<value>
:SCAN:RATio? <alg_name>
:SIZe? <alg_name>
[:STATe] <alg_name>,ON | OFF
[:STATe]? <alg_name>
:TIME? <alg_name>

:FUNCtion:DEFine <func_name>,<range>,<offset>,<block_data>
:OUTPut:DELay <usec> | AUTO
:OUTPut:DELay?
:UPDate

[:IMMediate]
:CHANnel <channel_item>
:WINDow <num_updates>
:WINDow?

190 HP E1419 Command Reference Chapter 6

ALGorithm[:EXPLicit]:ARRay

ALGorithm[:EXPLicit]:ARRay <alg_name>,<array_name>,<array_block> places
values of <array_name> for algorithm <alg_name> into the Update Queue. This
update is then pending until ALG:UPD is sent or an update event (as set by
ALG:UPD:CHANNEL) occurs.

NOTE ALG:ARRAY places a variable update request in the Update Queue. You can not
place more update requests in the Update Queue than are allowed by the current
setting of ALG:UPD:WINDOW or a "Too many updates -- send ALG:UPDATE
command’ error message will be generated.

Parameters

Parameter
Name

Parameter
Type

Range of
Values

Default
Units

alg_name string ALG1 - ALG32 | GLOBALS none

array_name string valid ’C’ variable name none

array_block block data block of IEEE-754 64-bit floating point
numbers

none

Comments • To send values to a Global array, set the <alg_name> parameter to "GLOBALS".
To define a global array see the ALGorithm:DEFine command.

• An error is generated if <alg_name> or <array_name> is not defined.

• When an array is defined (in an algorithm or in ’GLOBALS’), the HP E1419
allocates twice the memory required to store the array. When you send the
ALG:ARRAY command, the new values for the array are loaded into the second
space for this array. When you send the ALG:UPDATE, or
ALG:UPDATE:CHANNEL commands, the HP E1419 switches a pointer to the
space containing the new array values. This is how even large arrays can be
"updated" as if they were a single update request. If the array is again updated, the
new values are loaded into the original space and the pointer is again switched.

• <progname> is not case sensitive. However, <array_name> is case sensitive.

• Related Commands: ALG:DEFINE, ALG:ARRAY?

• *RST Condition: No algorithms or variables are defined.

ALGorithm

Chapter 6 HP E1419 Command Reference 191

Usage
send array values to my_array in ALG4

ALG:ARR ’ALG4’,’my_array’,<block_array_data>

send array values to the global array glob_array

ALG:ARR ’GLOBALS’,’glob_array’,<block_array_data>

ALG:UPD force update of variables

ALGorithm[:EXPLicit]:ARRay?

ALGorithm[:EXPLicit]:ARRay? <alg_name>,<array_name> returns the contents
of <array_name> from algorithm <alg_name>. ALG:ARR? can return contents of
global arrays when <alg_name> specifies ’GLOBALS’.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 | GLOBALS none

array_name string valid ’C’ variable name none

Comments • An error is generated if <alg_name> or <array_name> is not defined.

• Returned Value: Definite length block data of IEEE-754 64-bit float

ALGorithm[:EXPLicit]:DEFine

ALGorithm[:EXPLicit]:DEFine ’<alg_name>’,[<swap_size>,] ’<source_code>’ is
used to define control algorithms, and global variables.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 | GLOBALS none

swap_size numeric (uint16) 0 - Max Available Algorithm Memory words

source_code string or block data
see Comments

algorithm source none

Comments • The <alg_name> must be one of ALG1, ALG2, ALG3 etc. through ALG32 or
GLOBALS. The parameter is not case sensitive. ’ALG1’ and ’alg1’ are equivalent
as are ’GLOBALS’ and ’globals’.

• The <swap_size> parameter is optional. Include this parameter with the first
definition of <alg_name> when you will want to change <alg_name> later while
it is running. The value can range up to about 23Kwords (ALG:DEF will then
allocate 46K words as it creates two spaces for this algorithm).

ALGorithm

192 HP E1419 Command Reference Chapter 6

– If included, <swap_size> specifies the number of words of memory to allocate
for the algorithm specified by <alg_name>. The HP E1419 will then allocate
this much memory again, as an update buffer for this algorithm. Note that this
doubles the amount of memory space requested. Think of this as "space1" and
"space2" for algorithm <alg_name>. When you later send a replacement
algorithm (must be sent without the <swap_size> parameter), it will be placed
in "space2". You must send an ALG:UPDATE command for execution to
switch from the original, to the replacement algorithm. If you again change
the algorithm for <alg_name>, it will be executed from "space1" and so on.
Note that <swap_size> must be large enough to contain the original
executable code derived from <source_code> and any subsequent
replacement for it or an error 3085 "Algorithm too big" will be generated.

– If <swap_size> is not included, the HP E1419 will allocated just enough
memory for algorithm <alg_name>. Since there is no swapping buffer
allocated, this algorithm cannot be changed until a *RST command is sent to
clear all algorithms. See "When Accepted and Usage".

• The <source_code> parameter contents can be:

– When <alg_name> is ’ALG1’ through ’ALG32’, Algorithm Language source
code representing a user’s algorithm.

ALG:DEF ’ALG5’,’if(First_loop) O136=0; O136=O136+0.01;’

– When <alg_name> is ’GLOBALS’, Algorithm Language variable
declarations. A variable name must not be the same as an already define user
function.

ALG:DEF ’GLOBALS’,’static float my_glob_scalar, my_glob_array[24];’

The Algorithm Language source code is translated by the HP E1419’s driver into
an executable form and sent to the module.

• The <source_code> parameter can be one of three different SCPI types:

Quoted String: For short segments (single lines) of code, enclose the code string
within single (apostrophes), or double quotes. Because of string length limitations
within SCPI and some programming platforms, we recommend that the quoted
string length not exceed a single program line. Example:

ALG:DEF ’ALG1’,’static float outval = 0 ; O132 = outval; outval = outval + 1;’

Definite Length Block Program Data: For longer code segments (like complete
custom algorithms) this parameter works well because it specifies the exact length
of the data block that will be transferred. The syntax for this parameter type is:
#<non-zero digit><digit(s)><data byte(s)>

Where the value of <non-zero digit> is 1-9 and represents the number of
<digit(s)>. The value of <digit(s)> taken as a decimal integer indicates the number
of <data byte(s)> in the block. Example from "Quoted String" above:

ALGorithm

Chapter 6 HP E1419 Command Reference 193

ALG:DEF ’ALG1’,#211O132=I100;∅ (where "∅" is a null byte, required for
C-SCPI only)

NOTE for

HP C-SCPI

For Block Program Data, the Algorithm Parser requires that the source_code data
end with a null (0) byte. You must append the null byte to the end of the block’s
<data byte(s)>, and account for it in the byte count <digit(s)> from above. If the null
byte is not included, or <digit(s)> doesn’t include it, the error "Algorithm Block
must contain termination ’\0’" will be generated.

Indefinite Length Block Program Data: This form terminates the data transfer
when it received an End Identifier with the last data byte. Use this form only when
you are sure your controller platform will include the End Identifier. If it is not
included, the ALG:DEF command will "swallow" whatever data follows the
algorithm code. The syntax for this parameter type is:

#0<data byte(s)><null byte with End Identifier>
 Example from "Quoted String" above:

ALG:DEF ’ALG1’,#0O132=I100;∅ (where "∅" is a null byte, required for
C-SCPI only)

NOTE for

HP C-SCPI

For Block Program Data, the Algorithm Parser requires that the source_code data
end with a null (0) byte. You must append the null byte to the end of the block’s
<data byte(s)>. The null byte is sent with the End Identifier. If the null byte is not
included, the error "Algorithm Block must contain termination ’\0’" will be
generated.

When accepted
and Usage

1. If <alg_name> is not enabled to swap (not originally defined with the
<swap_size> parameter included) then both of the following conditions must be
true:

a. Module is in Trigger Idle State (after *RST, or ABORT, and before INIT).

OK

*RST

ALG:DEF ’GLOBALS’,’static float My_global;’

ALG:DEF ’ALG3’,’My_global = My_global + 1;’

Error

INIT

ALG:DEF ’ALG5’,’static float a_out; O136=a_out;’

"Can’t define new algorithm while running"

ALGorithm

194 HP E1419 Command Reference Chapter 6

b. The <alg_name> has not already been defined since a *RST command. Here
<alg_name> specifines either an algorithm name or ’GLOBALS’.

OK

*RST

ALG:DEF ’GLOBALS’,’static float My_global;’

Error

*RST

ALG:DEF ’GLOBALS’,’static float My_global;’

"No error"

ALG:DEF ’GLOBALS’,’static float A_different_global’

"Algorithm already defined" Because ’GLOBALS’ already defined

Error

*RST

ALG:DEF ’ALG3’,’static float z;if(First_loop) z = 0; z = z + 1;’

"No error"

ALG:DEF ’ALG3’,’static float Cntr, Inc; O132 = Cntr; Cntr = Cntr + Inc;’

"Algorithm already defined" Because ’ALG3’ already defined

2. If <alg_name> has been enabled to swap (originally defined with the <swap_size>
parameter included) then the <alg_name> can be re-defined (do not include
<swap_size> now) either while the module is in the Trigger Idle State, or while in
Waiting For Trigger State (INITed). Here <alg_name> is an algorithm name only,
not ’GLOBALS’.

OK

*RST

ALG:DEF ’ALG3’,200,’if(O132<15.0) O132=O132 + 0.1; else O132 = -15.0;’

INIT starts algorithm

ALG:DEF ’ALG3’,’if(O132<12.0) O132=O132 + 0.2; else O132 = -12.0;’

ALG:UPDATE Required to cause new code to run

"No error"

Error

*RST

ALG:DEF ’ALG3’,200,’if(O132<15.0) O132=O132 + 0.1; else O132 = -15.0;’

INIT starts algorithm

ALG:DEF ’ALG3’,200,’if(O132<12.0) O132=O132 + 0.2; else O132 = -12.0;’

ALGorithm

Chapter 6 HP E1419 Command Reference 195

"Algorithm swapping already enabled; Can’t change size"

Because <swap_size> included at re-definition

NOTES 1. Channels referenced by algorithms when they are defined, are only placed in the
channel list before INIT. The list cannot be changed after INIT. If you re-define
an algorithm (by swapping) after INIT, and it references channels not already in
the channel list, it will not be able to access the newly referenced channels. No
error message will be generated. To make sure all required channels will be
included in the channel list, define <alg_name> and re-define all algorithms that
will replace <alg_name> by swapping them before you send INIT. This insures
that all channels referenced in these algorithms will be available after INIT.

2. If you re-define an algorithm (by swapping) after INIT, and it declares an
existing variable, the declaration-initialization statement
(e.g. static float my_var = 3.5) will not change the current value of
that variable.

3. The driver only calculates overall execution time for algorithms defined before
INIT. This calculation is used to set the default output delay (same as executing
ALG:OUTP:DELAY AUTO). If an algorithm is swapped after INIT that take
longer to execute than the original, the output delay will behave as if set by
ALG:OUTP:DEL 0, rather than AUTO (see ALG:OUTP:DEL command). Use
the same procedure from note 1 to make sure the longest algorithm execution
time is used to set ALG:OUTP:DEL AUTO before INIT.

ALGorithm[:EXPLicit]:SCALar

ALGorithm[:EXPLicit]:SCALar <alg_name>,<var_name>,<value> sets the value
of the scalar variable <var_name> for algorithm <alg_name> into the Update
Queue. This update is then pending until ALG:UPD is sent or an update event (as set
by ALG:UPD:CHANNEL) occurs.

NOTE ALG:SCALAR places a variable update request in the Update Queue. You can not
place more update requests in the Update Queue than are allowed by the current
setting of ALG:UPD:WINDOW or a "Too many updates -- send ALG:UPDATE
command" error message will be generated.

ALGorithm

196 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 or GLOBALS none

var_name string valid ’C’ variable name none

value numeric (float32) IEEE-754 32-bit floating point number none

Comments • To send values to a global scalar variable, set the <alg_name> parameter to
’GLOBALS’. To define a scalar global variable see the ALGorithm:DEFine
command.

• An error is generated if <alg_name> or <var_name> is not defined.

• Related Commands: ALG:DEFINE, ALG:SCAL?

• *RST Condition: No algorithms or variables are defined.

Usage ALG:SCAL ’ALG1’,’my_var’,1.2345 1.2345 to variable my_var in ALG1

ALG:SCAL ’ALG1’,’another’,5.4321 5.4321 to variable another also in ALG1

ALG:SCAL ’ALG3’,’my_global_var’,1.001 1.001 to global variable

ALG:UPD update variables from update queue

ALGorithm[:EXPLicit]:SCALar?

ALGorithm[:EXPLicit]:SCALar? <alg_name>,<var_name> returns the value of the
scalar variable <var_name> in algorithm <alg_name>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

var_name string valid ’C’ variable name none

Comments • An error is generated if <alg_name> or <var_name> is not defined.

• Returned Value: numeric value. The type is float32.

ALGorithm[:EXPLicit]:SCAN:RATio

ALGorithm[:EXPLicit]:SCAN:RATio <alg_name>,<num_trigs> specifies the
number of scan triggers that must occur for each execution of algorithm
<alg_name>. This allows you to execute the specified algorithm less often than
other algorithms. This can be useful for algorithm tuning.

ALGorithm

Chapter 6 HP E1419 Command Reference 197

NOTES 1. The command ALG:SCAN:RATio <alg_name>,<num_trigs> does not take
effect until an ALG:UPDATE, or ALG:UPD:CHAN command is received. This
allows you to send multiple ALG:SCAN:RATIO commands and then
synchronize their effect with ALG:UPDATE.

2. ALG:SCAN:RATio places a variable update request in the Update Queue. You
can not place more update requests in the Update Queue than are allowed by the
current setting of ALG:UPD:WINDOW or a "Too many updates -- send
ALG:UPDATE command" error message will be generated.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

num_trigs numeric (int16) 1 to 32,767 none

Comments Specifying a value of 1 (the default) causes the named algorithm to be executed each
time a trigger is received. Specifying a value of n will cause the algorithm to be
executed once every n triggers. All enabled algorithms execute on the first trigger
after INIT.

• The algorithm specified by <alg_name> may or may not be currently defined. The
specified setting will be used when the algorithm is defined.

• Related Commands: ALG:UPDATE, ALG:SCAN:RATIO?

• When Accepted: Both before and after INIT. Also accepted before and after the
algorithm referenced is defined.

• *RST Condition: ALG:SCAN:RATIO = 1 for all algorithms

Usage ALG:SCAN:RATIO ’ALG4’,16 ALG4 executes once every 16 triggers.

ALGorithm[:EXPLicit]:SCAN:RATio?

ALGorithm[:EXPLicit]:SCAN:RATio? <alg_name> returns the number of triggers
that must occur for each execution of <alg_name>.

Comments • Since ALG:SCAN:RATIO is valid for an undefined algorithm,
ALG:SCAN:RATIO? will return the current ratio setting for <alg_name> even if
it is not currently defined.

• Returned Value: numeric, 1 to 32,768. The type is int16.

ALGorithm

198 HP E1419 Command Reference Chapter 6

ALGorithm[:EXPLicit]:SIZe?

ALGorithm[:EXPLicit]:SIZe? <alg_name> returns the number of words of
memory allocated for algorithm <alg_name>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

Comments • Since the returned value is the memory allocated to the algorithm, it will only
equal the actual size of the algorithm if it was defined by ALG:DEF without its
[<swap_size>] parameter. If enabled for swapping (if <swap_size> included at
original definition), the returned value will be equal to (<swap_size>)*2.

NOTE If <alg_name> specifies an undefined algorithm, ALG:SIZ? returns 0. This can be
used to determine whether algorithm <alg_name> is defined.

• Returned Value: numeric value up to the maximum available algorithm memory
(this approximately 46K words). The type is int32.

• *RST Condition: returned value is 0.

ALGorithm[:EXPLicit][:STATe]

ALGorithm[:EXPLicit][:STATe] <alg_name>,<enable> specifies that algorithm
<alg_name> , when defined, should be executed (ON), or not executed (OFF)
during run-time.

NOTES 1. The command ALG:STATE <alg_name>, ON | OFF does not take effect until
an ALG:UPDATE, or ALG:UPD:CHAN command is received. This allows you
to send multiple ALG:STATE commands and then synchronize their effect.

2. ALG:STATE places a variable update request in the Update Queue. You can
not place more update requests in the Update Queue than are allowed by the
current setting of ALG:UPD:WINDOW or a "Too many updates -- send
ALG:UPDATE command" error message will be generated.

ALGorithm

Chapter 6 HP E1419 Command Reference 199

CAUTION! When ALG:STATE OFF disables an algorithm, any outputs are left at the last value
set by the algorithm. Depending on the process, this uncontrolled situation could
even be dangerous. Make certain that you have put your process into a safe state
before you halt execution of a controlling algorithm.

The HP E1535 Watchdog Timer SCP was specifically developed to automatically
signal that an algorithm has stopped controlling a process. Use of the Watchdog
Timer is recommended for critical processes.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

enable boolean (uint16) 0 | 1 | ON | OFF none

Comments • The algorithm specified by <alg_name> may or may not be currently defined. The
setting specified will be used when the algorithm is defined.

• *RST Condition: ALG:STATE ON

• When Accepted: Both before and after INIT. Also accepted before and after the
algorithm referenced is defined.

• Related Commands: ALG:UPDATE, ALG:STATE?, ALG:DEFINE

Usage ALG:STATE ’ALG2’,OFF disable ALG2

ALGorithm[:EXPLicit][:STATe]?

ALGorithm[:EXPLicit][:STATe]? <alg_name> returns the state (enabled or
disabled) of algorithm <alg_name>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 none

Comments • Since ALG:STATE is valid for an undefined algorithm, ALG:STATE? will return
the current state for <alg_name> even if it is not currently defined.

• Returned Value: Numeric, 0 or 1. Type is uint16.

ALGorithm

200 HP E1419 Command Reference Chapter 6

• *RST Condition: ALG:STATE 1

ALGorithm[:EXPLicit]:TIME?

ALGorithm[:EXPLicit]:TIME? <alg_name> computes and returns a worst-case
execution time estimate in seconds.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

alg_name string ALG1 - ALG32 or MAIN none

Comments • When <alg_name> is ALG1 through ALG32, ALG:TIME? returns only the time
required to execute the algorithm’s code.

• When <alg_name> is ’MAIN’, ALG:TIME? returns the worst-case execution
time for an entire measurement & control cycle (sum of MAIN, all enabled
algorithms, analog and digital inputs, and control outputs).

• If triggered more rapidly than the value returned by ALG:TIME? ’MAIN’, the
HP E1419 will generate a "Trigger too fast" error.

NOTE If <alg_name> specifies an undefined algorithm, ALG:TIME? returns 0. This can be
used to determine whether algorithm <alg_name> is defined.

• When Accepted: Before INIT only.

• Returned Value: numeric value. The type is float32

ALGorithm:FUNCtion:DEFine

ALGorithm:FUNCtion:DEFine <function_name>,<range>,<offset>, <func_data>
defines a custom function that can be called from within a custom algorithm. See
Appendix E "Generating User Defined Functions" for full information. Also see the
HP VEE example program "fn_1419.vee" on page 5-160

ALGorithm

Chapter 6 HP E1419 Command Reference 201

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

function_name string valid ’C’ identifier
(if not already defined in ’GLOBALS’)

none

range numeric (float32) see comments none

offset numeric (float32) see comments none

func_data 512 element array
of uint16

see comments none

Comments • By providing this custom function capability, the HP E1419’s algorithm language
can be kept simple in terms of mathematical capability. This increases speed.
Rather than having to calculate high-order polynomial approximations of
non-linear functions, this custom function scheme loads a pre-computed look-up
table of values into memory. This method allows computing virtually any
transcendental or non-linear function in about 18µseconds. Resolution is 16 bits.

• <function_name> is a global identifier and cannot be the same as a previously
define global variable. A user function is globally available to all defined
algorithms.

• You generate values for <range>, <offset>, and <func_data> with the HP VEE
program "fn_1419.vee" supplied with your HP E1419. See Appendix E
"Generating User Defined Functions" for background information.

• <range>, and <offset> define the allowable input values to the function (domain).
If values input to the function are equal to or outside of (±<range>+<offset>), the
function may return ±INF in IEEE-754 format. For example; <range> = 8 (-8 to
8), <offset> = 12. The allowable input values must be greater than 4 and less than
20.

• <func_data> is a 512 element array of type uint16.

• The algorithm syntax for calling is: <function_name> (<expression>). for
example:

O136 = squareroot(2 * Input_val);

• Functions must be defined before defining algorithms that reference them.

• When Accepted: Before INIT only.

Usage ALG:FUNC:DEF ’F1’,8,12,<block_data> send range, offset and table values for
function F1

ALGorithm

202 HP E1419 Command Reference Chapter 6

ALGorithm:OUTPut:DELay

ALGorithm:OUTPut:DELay <delay> sets the delay from Scan Trigger to start of
output phase.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

delay numeric (float32) 0 - .081 | AUTO (2.5µs resolution) seconds

Comments • The algorithm output statements (e.g. O136 = Out_val) DO NOT program outputs
when they are executed. Instead, these statements write to an intermediate Output
Channel Buffer which is read and used for output AFTER all algorithms have
executed AND the algorithm output delay has expired (see Figure 6-1). Also note
that not all outputs will occur at the same time but will take approximately 10usec
per channel to write.

• When <delay> is 0, the Output phase begins immediately after the Execute
Algorithms phase. This provides the fastest possible execution speed while
potentially introducing variations in the time between trigger and beginning of the
Output phase. The variation can be caused by conditional execution constructs in
algorithms, or other execution time variations.

• If you set <delay> to less time than is required for the Input + Update +
Execute Algorithms phases, ALG:OUTP:DELAY? will report the time you set,
but the effect will revert to the same that is set by ALG:OUTP:DELAY 0 (Output
begins immediately after Execute phase).

• When <delay> is AUTO, the delay is set to the worst-case time required to
execute phases 1 through 3. This provides the fastest execution speed while
maintaining a fixed time between trigger and the OUTPUT phase.

• When you want to set the time from trigger to the beginning of OUTPUT, use the
following procedure. After defining all of your algorithms, execute:

ALG:OUTP:DEL AUTO sets minimum stable delay

ALG:OUTP:DEL? returns this minimum delay

ALG:OUTP:DEL <minimum+additional> additional = desired - minimum

Note that the delay value returned by ALG:OUTP:DEL? is valid only until
another algorithm is loaded. After that, you would have to re-issue the
ALG:OUTP:DEL AUTO and ALG:OUTP:DEL? commands to determine the new
delay that includes the added algorithm.

• When Accepted: Before INIT only.

• *RST Condition: ALG:OUTP:DELAY AUTO

ALGorithm

Chapter 6 HP E1419 Command Reference 203

ALGorithm:OUTPut:DELay?

ALGorithm:OUTPut:DELay? returns the delay setting from ALG:OUTP:DEL.

Comments • The value returned will be either the value set by ALG:OUTP:DEL <delay>, or
the value determined by ALG:OUTP:DEL AUTO.

• When Accepted: Before INIT only.

• *RST Condition: ALG:OUTP:DEL AUTO, returns delay setting determined by
AUTO mode.

• Returned Value: number of seconds of delay. The type is float32.

ALGorithm:UPDate[:IMMediate]

ALGorithm:UPDate[:IMMediate] requests an immediate update of any scalar, array,
algorithm code, ALG:STATE, or ALG:SCAN:RATIO changes that are pending.

Comments • Variables and algorithms can be accepted during Phase 1-INPUT or
Phase 2-UPDATE in Figure 6-1 when INIT is active. All writes to variables and
algorithms occur to their buffered elements upon receipt. However, these changes
do not take effect until the ALG:UPD:IMM command is processed at the
beginning of the UPDATE phase. The update command can be received at any
time prior to the UPDATE phase and will be the last command accepted. Note
that the ALG:UPD:WINDow command specifies the maximum number of
updates to do. If no update command is pending when entering the UPDATE
phase, then this time is dedicated to receiving more changes from the system.

• As soon as the ALG:UPD:IMM command is received, no further changes are
accepted until all updates are complete. A query of an algorithm value following
an UPDate command will not be executed until the UPDate completes; this may
be a useful synchronizing method.

• When Accepted: Before or after INIT.

Figure 6-1 Updating Variables and Algorithms

ALGorithm

204 HP E1419 Command Reference Chapter 6

• Related Commands: ALG:UPDATE:WINDOW, ALG:SCALAR, ALG:ARRAY,
ALG:STATE, and ALG:SCAN:RATIO, ALG:DEF (with swapping enabled)

Command
Sequence

The following example shows three scalars being written with the associated update
command following. See ALG:UPD:WINDOW.

ALG:SCAL ALG1’,’Setpoint’,25

ALG:SCAL ’ALG1’,’P_factor’,1.3

ALG:SCAL ’ALG2’,’P_factor’,1.7

ALG:UPD

ALG:SCAL? ’ALG2’,’Setpoint’

ALGorithm:UPDate:CHANnel

ALGorithm:UPDate:CHANnel <dig_chan> This command is used to update
variables, algorithms, ALG:SCAN:RATIO, and ALG:STATE changes when the
specified digital input level changes state. When the ALG:UPD:CHAN command is
executed, the current state of the digital input specified is saved. The update will be
performed at the next update phase (UPDATE in Figure 6-1), following the
channel’s change of digital state. This command is useful to synchronize multiple
HP E1419s when you want all variable updates to be processed at the same time.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

dig_chan Algorithm
Language channel
specifier (string)

Input channel for HP E1533: Iccc.Bb
for HP E1534: Iccc

where ccc=normal channel number and
b=bit number (include ".B")

none

Comments • The duration of the level change to the designated bit or channel MUST be at least
the length of time between scan triggers. Variable and algorithm changes can be
accepted during the INPUT or UPDATE phases (Figure 6-1) when INIT is active.
All writes to variables and algorithms occur to their buffered elements upon
receipt. However, these changes do not take effect until the ALG:UPD:CHAN
command is processed at the beginning of the UPDATE phase. Note that the
ALG:UPD:WINDow command specifies the maximum number of updates to do.
If no update command is pending when entering the UPDATE phase, then this
time is dedicated to receiving more changes from the system.

NOTE As soon as the ALG:UPD:CHAN command is received, the HP E1419 begins to
closely monitor the state of the update channel and can not execute other commands
until the update channel changes state to complete the update

ALGorithm

Chapter 6 HP E1419 Command Reference 205

• Note that an update command issued after the start of the UPDATE phase will be
buffered but not executed until the beginning of the next INPUT phase. At that
time, the current stored state of the specified digital channel is saved and used as
the basis for comparison for state change. If at the beginning of the scan trigger
the digital input state had changed, then at the beginning of the UPDATE phase
the update command would detect a change from the previous scan trigger and the
update process would begin.

• When Accepted: Before and After INIT.

Command
Sequence

The following example shows three scalars being written with the associated update
command following. When the ALG:UPD:CHAN command is received, it will read
the current state of channel 136, bit 0. At the beginning of the UPDATE phase, a
check will be made to determine if the stored state of channel 136 bit 0, is different
from the current state. If so, the update of all three scalars take effect next Phase 2.

INIT

ALG:SCAL ’ALG1’,’Outplimit’,25

ALG:SCAL ’ALG1’,’Alarmtrip’,1.3

ALG:SCAL ’ALG2’,’Alarmtrip’,1.7

ALG:UPD:CHAN ’I136.B0’ update on state change at bit zero of 8-bit
channel 36

ALGorithm:UPDate:WINDow

ALGorithm:UPDate:WINDow <num_updates> specifies how many updates you
may need to perform during phase 2 (UPDATE). The DSP will process this
command and assign a constant window of time for UPDATE.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

num_updates numeric (int16) 1 - 512 none

Comments • The default value for num_updates is 20. If you know you will need fewer
updates, specifying a smaller number will result in slightly greater loop execution
speeds.

• This command creates a time interval in which to perform all pending algorithm
and variable updates. To keep the loop times predictable and stable, the time
interval for UPDATE is constant. That is, it exists for all active algorithms, each
time they are executed whether or not an update is pending.

• *RST Condition: ALG:UPD:WIND 20

• When Accepted: Before INIT only.

ALGorithm

206 HP E1419 Command Reference Chapter 6

Usage You decide you will need to update a maximum of 8 variables per execution of
ALG:UPDATE.

ALG:UPD:WIND 8

NOTES 1. When the number of update requests exceeds the Update Queue size set with
ALG:UPD:WINDOW by one, the module will refuse the request and will issue
the error message "Too many updates in queue. Must send UPDATE
command". Send ALG:UPDATE, then re-send the update request that caused
the error.

2. The "Too many updates in queue..." error can occur before the module is
INITialized. It’s not uncommon with several algorithms defined, to have more
variables that need to be pre-set before INIT than you will change in one update
after the algorithms are running. You may send INIT with updates pending. The
INIT command automatically performs the updates before starting the
algorithms.

ALGOrithm:UPDate:WINDow?

ALGOrithm:UPDate:WINDow? returns the number of variable, and algorithm
updates allowed within the UPDATE window.

• Returned Value: number of updates in the UPDATEwindow. The type is int16

ALGorithm

Chapter 6 HP E1419 Command Reference 207

ARM

With the HP E1419, when the TRIG:SOURCE is set to TIMer, an ARM event must
occur to start the timer. This can be something as simple as executing the
ARM[:IMMediate] command, or it could be another event selected by
ARM:SOURCE.

NOTE The ARM subsystem may only be used then the TRIGger:SOURce is TIMer. If the
TRIGger:SOURce is not TIMer and ARM:SOURce is set to anything other than
IMMediate, an Error -221,"Settings conflict" will be generated.

The ARM command subsystem provides:

• An immediate software ARM (ARM:IMM).

• Selection of the ARM source (ARM:SOUR BUS | EXT | HOLD | IMM | SCP |
TTLTRG<n>) when TRIG:SOUR is TIMer.

Figure 6-7 shows the overall logical model of the Trigger System.

Figure 6-2 Logical Trigger Model

208 HP E1419 Command Reference Chapter 6

Subsystem Syntax ARM
[:IMMediate]
:SOURce BUS | EXTernal | HOLD | IMMediate | SCP | TTLTrg<n>
:SOURce?

ARM[:IMMediate]

ARM[:IMMediate] arms the trigger system when the module is set to the
ARM:SOUR BUS or ARM:SOUR HOLD mode.

Comments • Related Commands: ARM:SOURCE, TRIG:SOUR

• *RST Condition: ARM:SOUR IMM

Usage ARM:IMM After INIT, system is ready for trigger event

ARM Same as above (:IMM is optional)

ARM:SOURce

ARM:SOURce <arm_source> configures the ARM system to respond to the
specified source.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

arm_source discrete (string) BUS | EXT | HOLD | IMM | SCP
| TTLTrg<n>

none

Comments • The following table explains the possible choices.

Parameter Value Source of Arm

BUS ARM[:IMMediate]

EXTernal “TRG” signal on terminal module

HOLD ARM[:IMMediate]

IMMediate The arm signal is always true (continuous arming).

SCP SCP Trigger Bus (future HP or SCP Breadboard)

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)

• See note about ARM subsystem on page 6-208.

• When TRIG:SOURCE is TIMER, an ARM event is required only to trigger the
first scan. After that the timer continues to run and the module goes to the Waiting
For Trigger State ready for the next Timer trigger. An ABORT command will
return the module to the Trigger Idle State after the current scan is completed. See
TRIG:SOURce for more detail.

ARM

Chapter 6 HP E1419 Command Reference 209

While ARM:SOUR is IMM, you need only INITiate the trigger system to start a
measurement scan.

• When Accepted: Before INIT only.

• Related Commands: ARM:IMM, ARM:SOURCE?, INIT[:IMM], TRIG:SOUR

• *RST Condition: ARM:SOUR IMM

Usage ARM:SOUR BUS Arm with ARM command

ARM:SOUR TTLTRG3 Arm with VXIbus TTLTRG3 line

ARM:SOURce?

ARM:SOURce? returns the current arm source configuration. See the ARM:SOUR
command for more response data information.

• Returned Value: Discrete, one of BUS, HOLD, IMM, SCP, or TTLT0 through
TTLT7. The C-SCPI type is string.

Usage ARM:SOUR? An enter statement return arm source
configuration

ARM

210 HP E1419 Command Reference Chapter 6

CALibration

The Calibration subsystem provides for two major categories of calibration.

1. "A/D Calibration"; In these procedures, an external multimeter is used to
calibrate the A/D gain on all 5 of its ranges. The multimeter also determines the
value of the HP E1419’s internal calibration resistor. The values generated from
this calibration are then stored in nonvolatile memory and become the basis for
"Working Calibrations. These procedures each require a sequence of several
commands from the CALibration subsystem (CAL:CONFIG…,
CAL:VALUE…, and CAL:STORE ADC). Always execute *CAL? or a
CAL:TARE operation after A/D Calibration.

2. "Working Calibration", of which there are three levels (see Figure 6-3):

– "A/D Zero"; This function quickly compensates for any short term A/D
converter offset drift. This would be called the auto-zero function in a
conventional voltmeter. In the HP E1419 where channel scanning speed is of
primary importance, this function is performed only when the CAL:ZERO?
command is executed. Execute CAL:ZERO? as often as your control setup
will allow.

– "Channel Calibration"; This function corrects for offset and gain errors for
each module channel. The internal current sources are also calibrated. This
calibration function corrects for thermal offsets and component drift for each
channel out to the input side of the Signal Conditioning Plug-On (SCP). All
calibration sources are on-board and this function is invoked using either the
*CAL? or CAL:SETup command.

– "Channel Tare"; This function (CAL:TARE) corrects for voltage offsets in
external system wiring. Here, the user places a short across transducer wiring
and the voltage that the module measures is now considered the new "zero"
value for that channel. The new offset value can be stored in non-volatile
calibration memory (CAL:STORE TARE) but is in effect whether stored or
not. System offset constants which are considered long-term should be stored.
Offset constants which are measured relatively often would not require
non-volatile storage. CAL:TARE automatically executes a *CAL?.

Chapter 6 HP E1419 Command Reference 211

Subsystem Syntax CALibration
:CONFigure

:RESistance
:VOLTage <range>, ZERO | FS

:SETup
:SETup?
:STORe ADC | TARE
:TARE (@<ch_list>)

:RESet
:TARE?
:VALue

:RESistance <ref_ohms>
:VOLTage <ref_volts>

:ZERO?

CALibration:CONFigure:RESistance

CALibration:CONFigure:RESistance connects the on-board calibration reference
resistor to the Calibration Bus. A four-wire measurement of the resistor can be made
with an external "calibration DVM" connected to the H Cal, L Cal, H ohm, and L

Figure 6-3 Levels of Working Calibration

CALibration

212 HP E1419 Command Reference Chapter 6

ohm terminals on the Terminal Module, or the V H, V L, Ω H, and Ω L terminals
on the Cal Bus connector.

Comments • Related Commands: CAL:VAL:RES, CAL:STOR ADC

• When Accepted: Not while INITiated

Command
Sequence

CAL:CONF:RES connect reference resistor to Calibration
Bus

*OPC? or SYST:ERR? must wait for CAL:CONF:RES to complete

(now measure ref resistor with external DMM)

CAL:VAL:RES <measured value> Send measured value to module

CAL:STORE ADC Store cal constants in non-volatile memory
(used only at end of complete cal sequence)

CALibration:CONFigure:VOLTage

CALibration:CONFigure:VOLTage <range>,<zero_fs> connects the on-board
calibration source to the Calibration Bus. A measurement of the calibration source
voltage can be made with an external "calibration DVM" connected to the H Cal
and L Cal terminals on the Terminal Module, or the V H and V L terminals on the
Cal Bus connector. The range parameter controls the source voltage level available
when the zero_fs parameter is set to FSCale (full scale).

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

range numeric (float32) see comments volts

zero_fs discrete (string) ZERO | FSCale none

Comments • The range parameter must be within ±5% of one of the 5 following
values: .0625VDC, .25VDC, 1VDC, 4VDC, 16VDC
range may be specified in millivolts (mv).

• The FSCALE output voltage of the calibration source will be approximately 90%
of the nominal value for each range, except the 16V range where the output is
approximately 10V.

• When Accepted: Not while INITiated

• Related Commands: CAL:VAL:VOLT, STOR ADC

Command
Sequence

CAL:CONF:VOLTAGE .0625, ZERO connect voltage reference to Calibration Bus

*OPC? or SYST:ERR? must wait for CAL:CONF:VOLT to complete

(now measure voltage with external DMM)

CALibration

Chapter 6 HP E1419 Command Reference 213

CAL:VAL:VOLT <measured value> Send measured value to module

repeat above sequence for full-scale

repeat zero and full-scale for remaining ranges (.25, 1, 4, 16)

CAL:STORE ADC Store cal constants in non-volatile memory
(used only at end of complete cal sequence)

CALibration:SETup

CALibration:SETup causes the Channel Calibration function to be performed for
every module channelwith an analog SCP installed (input or output). The Channel
Calibration function calibrates the A/D Offset, and the Gain/Offset for these analog
channels. This calibration is accomplished using internal calibration references. For
more information see *CAL? on page 6-316.

Comments • CAL:SET performs the same operation as the *CAL? command except that since
it is not a query command it doesn’t tie-up the C-SCPI driver waiting for response
data from the instrument. If you have multiple HP E1419s in your system you can
start a CAL:SET operation on each and then execute a CAL:SET? command to
complete the operation on each instrument.

• Related Commands: CAL:SETup?, *CAL?

• When Accepted: Not while INITiated

Usage CAL:SET start SCP Calibration on 1st HP E1419

: start SCP Calibration on more HP E1419s

CAL:SET start SCP Calibration on last HP E1419

CAL:SET? query for results from 1st HP E1419

: query for results from more HP E1419s

CAL:SET? query for results from last HP E1419

CALibration:SETup?

CALibration:SETup? Returns a value to indicate the success of the last CAL:SETup
or *CAL? operation. CAL:SETup? returns the value only after the CAL:SETup
operation is complete.

Comments • Returned Value:

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See Error Messages in Appendix B.

-2 No results available No *CAL? or CAL:SETUP done

The C-SCPI type for this returned value is int16.

CALibration

214 HP E1419 Command Reference Chapter 6

• Related Commands: CAL:SETup, *CAL?

Usage see CAL:SETup

CALibration:STORe

CALibration:STORe <type> stores the most recently measured calibration constants
into Flash Memory (Electrically Erasable Programmable Read Only Memory).
When type=ADC, the module stores its A/D calibration constants as well as
constants generated from *CAL?/CAL:SETup into Flash Memory. When
type=TARE, the module stores the most recently measured CAL:TARE channel
offsets into Flash Memory.

NOTE The HP E1419’s Flash Memory has a finite lifetime of approximately ten thousand
write cycles (unlimited read cycles). While executing CAL:STOR once every day
would not exceed the lifetime of the Flash Memory for approximately 27 years, an
application that stored constants many times each day would unnecessarily shorten
the Flash Memory’s lifetime. See Comments below.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

type discrete (string) ADC | TARE none

Comments • The Flash Memory Protect jumper (JM2201) must be set to the enable position
before executing this command (See Chapter 1).

• Channel offsets are compensated by the CAL:TARE command even when not
stored in the Flash Memory. There is no need to use the CAL:STORE TARE
command for channels which are re-calibrated frequently.

• When Accepted: Not while INITiated

• Related Commands: CAL:VAL:RES, CAL:VAL:VOLT

• *RST Condition: Stored calibration constants are unchanged

Usage CAL:STORE ADC Store cal constants in non-volatile memory
after A/D calibration

CAL:STORE TARE Store channel offsets in non-volatile
memory after channel tare

CALibration

Chapter 6 HP E1419 Command Reference 215

Command
Sequence

Storing A/D cal constants

perform complete A/D calibration, then...

CAL:STORE ADC

Storing channel tare (offset) values

CAL:TARE <ch_list> to correct channel offsets

CAL:STORE TARE Optional depending on necessity of long
term storage

CALibration:TARE

CALibration:TARE (@<ch_list>) measures offset (or tare) voltage present on the
channels specified and stores the value in on-board RAM as a calibration constant
for those channels. Future measurements made with these channels will be
compensated by the amount of the tare value. Use CAL:TARE to compensate for
voltage offsets in system wiring and residual sensor offsets. Where tare values need
to be retained for long periods, they can be stored in the module’s Flash Memory
(Electrically Erasable Programmable Read Only Memory) by executing the
CAL:STORe TARE command.
For more information see Compensating for System Offsets on page 3-100.

Note for

Thermocouples

• You must not use CAL:TARE on field wiring that is made up of thermocouple
wire. The voltage a thermocouple wire pair generates can not be removed by
introducing a short anywhere between its junction and its connection to an
isothermal panel (either the HP E1419’s Terminal Module or a remote isothermal
reference block). Thermal voltage is generated along the entire length of a
thermocouple pair where there is any temperature gradient along that length. To
CAL:TARE thermocouple wire this way would introduce an unwanted offset in
the voltage/temperature relationship for that channel. If you inadvertently
CAL:TARE a thermocouple wire pair, use CAL:TARE:RESET to reset all tare
constants to zero.

• You should use CAL:TARE to compensate wiring offsets (copper wire, not
thermocouple wire) between the HP E1419 and a remote thermocouple reference
block. Disconnect the thermocouples and introduce copper shorting wires between
each channel’s HI and LO, then execute CAL:TARE for these channels.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ch_list channel list (string) 100 - 163 none

Comments • CAL:TARE also performs the equivalent of a *CAL? operation. This operation
uses the Tare constants to set a DAC which will remove each channel offset as

CALibration

216 HP E1419 Command Reference Chapter 6

"seen" by the module’s A/D converter. As an example assume that the system
wiring to channel 0 generates a +0.1Volt offset with 0Volts (a short) applied at the
Unit Under Test (UUT). Before CAL:TARE the module would return a reading of
0.1Volts for channel 0. After CAL:TARE (@100), the module will return a
reading of 0Volts with a short applied at the UUT and the system wiring offset
will be removed from all measurements of the signal to channel 0.

• Set Amplifier/Filter SCP gain before CAL:TARE. For best accuracy, choose the
gain that will be used during measurements. If you decide to change the range or
gain setup later, be sure to perform another *CAL?.

• Output SCP channels referenced in <ch_list> will not be affected by CAL:TARE.
Some output have input channels associated with them in order to approximately
verify their output values. These input channels will be not be affected by
CAL:TARE even if they are referenced in <ch_list>.

• If Open TransducerDetect (OTD) is enabled when CAL:TARE is executed, the
module will disable OTD, wait 1 minute to allow channels to settle, perform the
calibration, and then re-enable OTD. If you wish the OTD current to remain on
while CAL:TARE executes, you must use the
DIAG:CAL:TARE:OTD:MODE:STATE command to set this configuration.

• The maximum voltage that CAL:TARE can compensate for is dependent on the
range chosen and SCP gain setting. The following table lists these values.

Maximum CAL:TARE Offsets

A/D range
±V F.Scale

Offset V
Gain x1

Offset V
Gain x8

Offset V
Gain x16

Offset V
Gain x64

16
4
1

.25
.0625

3.2213
.82101
.23061
.07581
.03792

.40104

.10101

.02721

.00786

.00312

.20009

.05007

.01317

.00349

.00112

.04970

.01220

.00297

.00055
n/a

• Channel offsets are compensated by the CAL:TARE command even when not
stored in the Flash Memory. There is no need to use the CAL:STORE TARE
command for channels which are re-calibrated frequently.

• The HP E1419’s Flash Memory has a finite lifetime of approximately ten
thousand write cycles (unlimited read cycles). While executing CAL:STOR once
every day would not exceed the lifetime of the Flash Memory for approximately
27 years, an application that stored constants many times each day would
unnecessarily shorten the Flash Memory’s lifetime. See Comments below.

• Executing CAL:TARE sets the Calibrating bit (bit 0) in Operation Status Group.
Executing CAL:TARE? resets the bit.

CALibration

Chapter 6 HP E1419 Command Reference 217

• When Accepted: Not while INITiated

• Related Commands: CAL:TARE?, CAL:STOR TARE

• *RST Condition: Channel offsets are not affected by *RST.

Command
Sequence

CAL:TARE <ch_list> to correct channel offsets

CAL:TARE? to return the success flag from the
CAL:TARE operation

CAL:STORE TARE Optional depending on necessity of long
term storage

CALibration:TARE:RESet

CALibration:TARE:RESet resets the tare calibration constants to zero for all
64 channels. Executing CAL:TARE:RES affects the tare cal constants in RAM only.
To reset the tare cal constants in Flash Memory, execute CAL:TARE:RES and then
execute CAL:STORE TARE.

Command
Sequence

CAL:TARE:RESET to reset channel offsets

CAL:STORE TARE Optional if necessary to reset tare cal
constants in Flash Memory.

CALibration:TARE?

CALibration:TARE? Returns a value to indicate the success of the last CAL:TARE
operation. CAL:TARE? returns the value only after the CAL:TARE operation is
complete.

• Returned Value:

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See Error Messages in Appendix B.

Also run *TST?

-2 No results available Perform CAL:TARE
before CAL:TARE?

The C-SCPI type for this returned value is int16.

• Executing CAL:TARE sets the Calibrating bit (bit 0) in Operation Status Group.
Executing CAL:TARE? resets the bit.

CALibration

218 HP E1419 Command Reference Chapter 6

• Related Commands: CAL:STOR TARE

Command
Sequence

CAL:TARE <ch_list> to correct channel offsets

CAL:TARE? to return the success flag from the
CAL:TARE operation

CAL:STORE TARE Optional depending on necessity of long
term storage

CALibration:VALue:RESistance

CALibration:VALue:RESistance <ref_ohms> sends the value of the on-board
reference resistor -as measured with the external "calibration DVM"- to the module.
This value will be used to calibrate current sources.

Parameters
Parameter

Name
Parameter

Type
Range of

Value
Default

Units

ref_ohms numeric (float32) 7,500 ± 4% ohms

Comments • Use the CAL:CONF:RES command to configure the reference resistor for
measurement at the Calibration Bus connector.

• A four-wire measurement of the resistor is made with an external multimeter
connected to the H Cal, L Cal, H ohm, and L ohm terminals on the Terminal
Module, or the V H, V L, Ω H, and Ω L terminals on the Cal Bus connector.

• <ref_ohms> must be within 4% of the 7500 Ohm nominal resistor value or a
 -222 ’Data out of range’ error will be generated.

• <ref_ohms> may be specified in Kohm (kohm).

• When Accepted: Not while INITiated

• Related Commands: CAL:CONF:RES, CAL:STORE ADC

Command
Sequence

CAL:CONF:RES

(now measure ref resistor with external DMM)

CAL:VAL:RES <measured value> Send measured value to module

CALibration:VALue:VOLTage

CALibration:VALue:VOLTage <ref_volts> sends the value of the calibration
reference source voltage -as measured by an external "calibration DVM"- to the
module for A/D calibration.

CALibration

Chapter 6 HP E1419 Command Reference 219

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ref_volts numeric (float32) must be within 4% of range nominal volts

Comments • Use the CAL:CONF:VOLT command to configure the on-board voltage source
for measurement at the Calibration Bus connector.

• A measurement of the source voltage is made with an external multimeter
connected to the H Cal, and L Cal terminals on the Terminal Module, or the V H,
and V L terminals on the Cal Bus connector.

• The value sent must be for the currently configured range and output (zero or full
scale) as set by the previous CAL:CONF:VOLT <range>, ZERO | FSCale
command.

• <ref_volts> must be within 4% of the actual reference voltage value as read after
CAL:CONF:VOLT, or an error 3042 ’0x400: DSP-DAC adjustment went to limit’
will be generated.

• <ref_volts> may be specified in millivolts (mv).

• When Accepted: Not while INITiated

• Related Commands: CAL:CONF:VOLT, CAL:STORE ADC

Command
Sequence

CAL:CONF:VOLTAGE 4,FSCALE

*OPC? Wait for operation to complete

enter statement

(now measure voltage with external DMM)

CAL:VAL:VOLT <measured value> Send measured value to module

CALibration:ZERO?

CALibration:ZERO? corrects Analog to Digital converter offset for any drift since
the last *CAL? or CAL:ZERO? command was executed. The offset calibration takes
about 5 seconds and should be done as often as you control set up allows.

Comments • The CAL:ZERO? command only corrects for A/D offset drift (zero). Use the
*CAL? common command to perform on-line calibration of channels as well as
A/D offset. *CAL? performs gain and offset correction of the A/D and each
channel with an analog SCP installed (both input and output).

CALibration

220 HP E1419 Command Reference Chapter 6

• Returned Value:

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See Error Messages in Appendix B

The C-SCPI type for this returned value is int16.

• Executing this command does not alter the module’s programmed state (function,
range etc.).

• Related Commands: *CAL?

• *RST Condition: A/D offset performed

Usage CAL:ZERO?

enter statement here returns 0 or -1

CALibration

Chapter 6 HP E1419 Command Reference 221

DIAGnostic

The DIAGnostic subsystem allows you to perform special operations that are not
standard in the SCPI language. This includes checking the current revision of the
Control Processor’s firmware, and that it has been properly loaded into Flash
Memory.

Subsystem Syntax DIAGnostic
:CALibration

:SETup
:MODE 0 | 1
:MODE?

:TARe
[:OTD]

:MODE 0 | 1
:MODE?

:CHECksum?
:CUSTom

:LINear <table_range>,<table_block>,(@<ch_list>)
:PIECewise <table_range>,<table_block>,(@<ch_list>)
:REFerence

:TEMPerature
:IEEE 1 | 0
:IEEE?
:INTerrupt

[:LINe] <intr_line>
[:LINe]?

:OTDetect
[:STATe] 1 | 0 | ON | OFF,(@<ch_list>)
[:STATe]? (@<channel>)

:QUERy
:SCPREAD? <reg_addr>

:VERSion?

222 HP E1419 Command Reference Chapter 6

DIAGnostic:CALibration:SETup[:MODE]

DIAGnostic:CALibration:SETup[:MODE] <mode> sets the type of calibration to
use for analog output SCPs like the HP E1531 and HP E1532 when *CAL? or
CAL:SET are executed.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

mode boolean (uint 16) 0 | 1 volts

Comments • When <mode> is set to 1 (the *RST Default) channels are calibrated using the
Least Squares Fit method to provide the minimum error overall (over the entire
output range). When <mode> is 0, channels are calibrated to provide the minimum
error at their zero point. See your SCPs User’s Manual for its accuracy
specifications using each mode.

• Related Commands: *CAL?, CAL:SET, DIAG:CAL:SET:MODE?

• *RST Condition: DIAG:CAL:SET:MODE 1

Usage set analog DAC SCP cal mode for best zero accuracy

DIAG:CAL:SET:MODE 0 set mode for best zero cal

*CAL? start channel calibration

DIAGnostic:CALibration:SETup[:MODE]?

DIAGnostic:CALibration:SETup[:MODE]? returns the currently set calibration
mode for analog output DAC SCPs.

Comments • Returns a 1 when channels are calibrated using the Least Squares Fit method to
provide the minimum error overall (over the entire output range). Returns a 0
when channels are calibrated to provide the minimum error at their zero point. See
your SCPs User’s Manual for its accuracy specifications using each mode. The
C-SCPI type is int16.

• Related Commands: DIAG:CAL:SET:MOD, *CAL?, CAL:SET

• *RST Condition: DIAG:CAL:SET:MODE 1

DIAGnostic

Chapter 6 HP E1419 Command Reference 223

 DIAGnostic:CALibration:TARE[:OTDetect]:MODE

DIAGnostic:CALibration:TARE[:OTDetect]:MODE <mode> sets whether Open
Transducer Detect current will be turned off or left on (the default mode) during the
CAL:TARE operation.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

mode boolean (uint 16) 0 | 1 volts

Comments • When <mode> is set to 0 (the *RST Default), channels are tare calibrated with
their OTD current off. When <mode> is 1, channels that have their OTD current
on (DIAGnostic:OTDetect ON,(@<ch_list>)) are tare calibrated with their OTD
current left on.

• By default (*RST) the CALibration:TARE? command will calibrate all channels
with the OTD circuitry disabled. This is done for two reasons: first, most users do
not leave OTD enabled while taking readings, and second, the
CALibration:TARE? operation takes much longer with OTD enabled. However,
for users who intend to take readings with OTD enabled, setting
DIAG:CAL:TARE:OTD:MODE to 1, will force the CAL:TARE? command to
perform calibration with OTD enabled on channels so specified by the user with
the DIAG:OTD command.

• Related Commands: *CAL?, CAL:SET, DIAG:CAL:SET:MODE?

• *RST Condition: DIAG:CAL:TARE:MODE 0

Usage configure OTD on during CAL:TARE

DIAG:CAL:TARE:MODE 1 set mode for OTD to stay on

CAL:TARE? start channel tare cal.

DIAGnostic:CALibration:TARE[:OTDetect]:MODE?

DIAGnostic:CALibration:TARE[:OTDetect]:MODE? returns the currently set
mode for controlling Open Transducer Detect current while performing
CAL:TARE? operation.

Comments • Returns a 0 when OTD current will be turned off during CAL:TARE?. Returns 1
when OTD current will be left on during CAL:TARE? operation. The C-SCPI
type is int16.

• Related Commands: DIAG:CAL:TARE:MOD, DIAG:OTD, CAL:TARE?

• *RST Condition: DIAG:CAL:TARE:MODE 0

DIAGnostic

224 HP E1419 Command Reference Chapter 6

DIAGnostic:CHECksum?

DIAGnostic:CHECksum? performs a checksum operation on Flash Memory. A
returned value of 1 indicates that Flash memory contents are correct. A returned
value of 0 indicates that the Flash Memory is corrupted, or has been erased.

Comments • Returned Value: Returns 1 or 0. The C-SCPI type is int16.

Usage DIAG:CHEC? Checksum Flash Memory, return 1 for OK,
0 for corrupted

DIAGnostic:CUSTom:LINear

DIAGnostic:CUSTom:LINear <table_range>,<table_block>, (@<ch_list>)
downloads a custom linear Engineering Unit Conversion table (in <table_block>) to
the HP E1419. Contact your Hewlett-Packard System Engineer for more
information on Custom Engineering Unit Conversion for your application.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

table_range numeric (float32) .015625 | .03125 | .0625 | .125 | .25 | .5 |
1 | 2 | 4 | 8 | 16 | 32 | 64

volts

table_block definite length
block data

see comments none

ch_list channel list (string) 100 - 163 none

Comments • <table_block> is a block of 8 bytes that define 4, 16-bit values. SCPI requires that
<table_block> include the definite length block data header. C-SCPI adds the
header for you.

• <table_range> specifies the range of voltage that the table covers (from
-<table_range> to +<table_range>). The value you specify must be within 5% of
one of the nominal values from the table above.

• <ch_list> specifies which channels may use this custom EU table

• Related Commands: [SENSe:]FUNCtion:CUSTom

• *RST Condition: All custom EU tables erased

Usage program puts table constants into array table_block

DIAG:CUST:LIN table_block,(@116:123) send table to HP E1419 for chs 16-23

SENS:FUNC:CUST:LIN 1,1,(@116:123) link custom EU with chs 16-23

INITiate then TRIGger module

DIAGnostic

Chapter 6 HP E1419 Command Reference 225

DIAGnostic:CUSTom:PIECewise

DIAGnostic:CUSTom:PIECewise <table_range>,<table_block>, (@<ch_list>)
downloads a custom piece wise Engineering Unit Conversion table (in
<table_block>) to the HP E1419. Contact your Hewlett-Packard System Engineer
for more information on Custom Engineering Unit Conversion for your application.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

table_range numeric (float32) .015625 | .03125 | .0625 | .125 | .25 |
.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64

volts

table_block definite length
block data

see comments none

ch_list channel list (string) 100 - 163 none

Comments • <table_block> is a block of 1,024 bytes that define 512 16-bit values. SCPI
requires that <table_block> include the definite length block data header. C-SCPI
adds the header for you.

• <table_range> specifies the range of voltage that the table covers (from
-<table_range> to +<table_range>).

• <ch_list> specifies which channels may use this custom EU table.

• Related Commands: [SENSe:]FUNCtion:CUSTom

• *RST Condition: All custom EU tables erased.

Usage program puts table constants into array table_block

DIAG:CUST:PIEC table_block,(@124:131) send table for chs 24-31 to HP E1419

SENS:FUNC:CUST:PIEC 1,1,(@124:131) link custom EU with chs 24-31

INITiate then TRIGger module

DIAGnostic:CUSTom:REFerence:TEMPerature

DIAGnostic:CUSTom:REFerence:TEMPerature extracts the current Reference
Temperature Register Contents, converts it to 32-bit floating point format and sends
it to the FIFO. This command is used to verify that the reference temperature is as
expected after measuring it using a custom reference temperature EU conversion
table.

Usage
your program must have EU table values stored in table_block

download the new reference EU table

DIAG:CUST:PIECEWISE <table_range>,<table_block>,(@<ch_list>)

DIAGnostic

226 HP E1419 Command Reference Chapter 6

designate channel as reference

SENS:FUNC:CUST:REF <range>,(@<ch_list>)

set up scan list sequence (ch 0 in this case)

Now run the algorithm that uses the custom reference conversion table

dump reference temp register to FIFO

DIAG:CUST:REF:TEMP

read the diagnostic reference temperature value

SENS:DATA:FIFO?

DIAGnostic:IEEE

DIAGnostic:IEEE <mode> enables (1) or disables (0) IEEE-754 NAN (Not A
Number) and ±INF value outputs. This command was created for the HP VEE
platform.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

mode boolean (uint 16) 0 | 1 volts

Comments • When <mode> is set to 1, the module can return ±INF and NAN values according
to the IEEE-754 standard. When <mode> is set to 0, the module returns values as
±9.9E37 for INF and 9.91E37 for NAN.

• Related Commands: DIAG:IEEE?

• *RST Condition: DIAG:IEEE 1

Usage Set IEEE mode

DIAG:IEEE 1 INF values returned in IEEE standard

DIAGnostic:IEEE?

DIAGnostic:IEEE? returns the currently set IEEE mode.

Comments • The C-SCPI type is int16.

• Related Commands: DIAG:IEEE

• *RST Condition: DIAG:IEEE 1

DIAGnostic

Chapter 6 HP E1419 Command Reference 227

DIAGnostic:INTerrupt[:LINe]

DIAGnostic:INTerrupt[:LINe] <intr_line> sets the VXIbus interrupt line the
module will use.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

intr_line numeric (int16) 0 through 7 none

Comments • Related Commands: DIAG:INT:LINE?

• Power-on and *RST Condition: DIAG:INT:LINE 1

Usage DIAG:INT:LINE 5 Module will interrupt on VXIbus interrupt
line 5

DIAGnostic:INTerrupt[:LINe]?

DIAGnostic:INTerrupt[:LINe]? returns the VXIbus interrupt line that the module is
set to use.

Comments • Returned Value: Numeric 0 through 7. The C-SCPI type is int16.

• Related Commands: DIAG:INT:LINE

Usage DIAG:INT? Enter statement will return 0 through 7

DIAGnostic:OTDetect[:STATe]

DIAGnostic:OTDetect[:STATe] <enable>,(@<ch_list>) enables and disables the
HP E1419’s "Open Transducer Detection" capability (OTD). When Open
Transducer Detection is enabled, a very high impedance path connects all SCP
channels to a voltage source greater than 16 volts. If an enabled channel has an open
transducer, the input signal becomes the source voltage and the channel returns an
input over-range value. The value returned is +9.91E+37 (ASCII).

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list channel list (string) 100 - 163 none

Comments • Open Transducer Detection is enabled/disabled on a whole Signal Conditioning
Plug-on basis. Selecting any channel on an SCP selects all channels on that SCP
(8 channels per SCP).

DIAGnostic

228 HP E1419 Command Reference Chapter 6

• The DIAG:CAL:TARE:MODE <mode> command affects how OTD is controlled
during the CAL:TARE? operation. When <mode> is set to 0 (the *RST Default),
channels are tare calibrated with their OTD current off. When <mode> is 1,
channels that have their OTD current on (DIAGnostic:OTDetect
ON,(@<ch_list>)) are tare calibrated with their OTD current left on.

• Related Commands: DIAG:OTDETECT:STATE?, DIAG:CAL:TARE:MODE

• *RST Condition: DIAG:OTDETECT OFF

NOTE If OTD is enabled when *CAL?, or CAL:TARE is executed, the module will disable
OTD, wait 1 minute to allow channels to settle, perform the calibration, and then
re-enable OTD.

Usage DIAG:OTD ON,(@100:107,115:123) select OTD for the first and third SCP
(complete channel lists for readability only)

DIAG:OTD:STATE ON,(@100,115) same function as example above (only first
channel of each SCP specified)

DIAG:OTDETECT:STATE OFF,(@108) disable OTD for the 8 channels on the
second SCP (only first channel of SCP
specified)

DIAGnostic:OTDetect[:STATe]?

DIAGnostic:OTDetect[:STATe]? (@<channel>) returns the current state of "Open
Transducer Detection" for the SCP containing the specified channel.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • channel must specify a single channel only.

• Returned Value: Returns 1 (enabled) or 0 (disabled). The C-SCPI type is int16.

• Related Commands: DIAG:OTDETECT:STATE ON | OFF

Usage DIAG:OTD:STATE? (@108) enter statement returns either a 1 or a 0

DIAGnostic

Chapter 6 HP E1419 Command Reference 229

DIAGnostic:QUERy:SCPREAD?

DIAGnostic:QUERy:SCPREAD? <reg_addr> returns data word from a Signal
Conditioning Plug-on register.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

reg_addr numeric (int32) 0-65,535 none

Comments • Returned Value: returns numeric register value. C-SCPI type is int32.

Usage DIAG:QUERY:SCPREAD? 258 read Watchdog SCP’s config/status register

enter statement here return SCP ID value

DIAGnostic:VERSion?

DIAGnostic:VERSion? returns the version of the firmware currently loaded into
Flash Memory. The version information includes manufacturer, model, serial
number, firmware version and date.

Comments • Returned Value: Examples of the response string format:
HEWLETT-PACKARD,E1419,US34000478,A.04.00,Thu Aug 5 9:38:07 MDT 1994

• The C-SCPI type is string.

• Related Commands: *IDN?

Usage DIAG:VERS? Returns version string as shown above

DIAGnostic

230 HP E1419 Command Reference Chapter 6

FETCh?

Subsystem Syntax FETCh?

The FETCh? command returns readings stored in VME memory.

Comments • This command is only available in systems using an HP E1405B or HP E1406A
command module.

• FETCH? does not alter the readings stored in VME memory. Only the *RST or
INIT… commands will clear the readings in VME memory.

• The format of readings returned is set using the FORMat[:DATA] command.

• Returned Value: REAL,32, REAL,64, and PACK,64, readings are returned in the
IEEE-488.2-1987 Definite Length Arbitrary Block Data format. This data return
format is explained in "Arbitrary Block Program Data" on page 6-185 of this
chapter. For REAL,32, readings are 4 bytes in length. For REAL 64, and PACK,
64, readings are 8 bytes in length.

• PACKed,64 returns the same values as REAL,64 except for Not-a-Number
(NaN), IEEE +INF and IEEE -INF. The NaN, IEEE +INF and IEEE -INF values
returned by PACKed,64 are in a form compatible with HP Workstation BASIC
and HP BASIC/UX. Refer to the FORMat command for the actual values for
NaN, +INF, and -INF.

• ASCii is the default format.

• ASCII readings are returned in the form ±1.234567E±123. For example 13.325
volts would be +1.3325000E+001. Each reading is followed by a comma (,). A
line feed (LF) and End-Or-Identify (EOI) follow the last reading.

• Related Commands: MEMory Subsystem, FORMat[:DATA]

• *RST Condition: MEMORY:VME:ADDRESS 240000;
MEMORY:VME:STATE OFF; MEMORY:VME:SIZE 0

Chapter 6 HP E1419 Command Reference 231

Use Sequence MEM:VME:ADDR #H300000

MEM:VME:SIZE #H100000 1M byte or 262144 readings

MEM:VME:STAT ON

*

 * (set up E1419 for scanning)

 *

TRIG:SOUR IMM let unit trigger on INIT

INIT program execution remains here until VME
memory is full or the HP E1419 has stopped
taking readings

FORM REAL,64 affects only the return of data

FETCH?

NOTE When using the MEM subsystem, the module must be triggered before executing the
INIT command (as shown above) unless you are using an external trigger (EXT
trigger). When using EXT trigger, the trigger can occur at any time.

FETCh?

232 HP E1419 Command Reference Chapter 6

FORMat

The FORMat subsystem provides commands to set and query the response data
format of readings returned using the [SENSe:]DATA:FIFO:…? commands.

Subsystem Syntax FORMat
[:DATA] <format>[,<size>]
[:DATA]?

FORMat[:DATA]

FORMat[:DATA] <format>[,<size>] sets the format for data returned using the
[SENSe:]DATA:FIFO:…?, [SENSe:]DATA:CVTable, and FETCh? commands.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

format discrete (string) REAL | ASCii | PACKed none

size numeric for ASCii, 7
for REAL, 32 | 64
for PACKed, 64

none

Comments • The REAL format is IEEE-754 Floating Point representation.

• REAL, 32 provides the highest data transfer performance since no format
conversion step is placed between reading and returning the data. The default size
for the REAL format is 32 bits. Also see DIAG:IEEE command.

• PACKed, 64 returns the same values as REAL, 64 except for Not-a-Number
(NaN), IEEE +INF and IEEE -INF. The NaN, IEEE +INF and IEEE -INF values
returned by PACKed,64 are in a form compatible with HP Workstation BASIC
and HP BASIC/UX (see table on following page).

• REAL 32, REAL 64, and PACK 64, readings are returned in the
IEEE-488.2-1987 Arbitrary Block Data format. The Block Data may be either
Definite Length or Indefinite Length depending on the data query command
executed. These data return formats are explained in "Arbitrary Block Program
Data" on page 6-185 of this chapter. For REAL 32, readings are 4 bytes in length
(C-SCPI type is float32 array). For REAL 64, and PACK, 64, readings are 8
bytes in length (C-SCPI type is float64 array).

• ASCii is the default format. ASCII readings are returned in the form
±1.234567E±123. For example 13.325 volts would be +1.3325000E+001. Each
reading is followed by a comma (,). A line feed (LF) and End-Or-Identify (EOI)
follow the last reading (C-SCPI type is string array).

Chapter 6 HP E1419 Command Reference 233

NOTE *TST? leaves the instrument in its power-on reset state. This means that the ASC,7
data format is set even if you had it set to something else before executing *TST?. If
you need to read the FIFO for test information, set the format after *TST? and
before reading the FIFO.

• Related Commands: [SENSe:]DATA:FIFO:…?, [SENSe:]DATA:CVTable?,
MEMory subsystem, and FETCh?, Also see how DIAG:IEEE can modify
REAL,32 returned values.

• *RST Condition: ASCII, 7

• After *RST/Power-on, each channel location in the CVT contains the IEEE-754
value "Not-a-number" (NaN). Channel readings which are a positive overvoltage
return IEEE +INF and a negative overvoltage return IEEE -INF. The NaN, +INF,
and -INF values for each format are shown in the following table.

 Format IEEE Term Value Meaning

ASCii +INF +9.9E37 Positive Overload

-INF -9.9E37 Negative Overload

NaN +9.91E37 No Reading

REAL,32 +INF 7F80000016 Positive Overload

-INF FF80000016 Negative Overload

NaN 7FFFFFFF16 No Reading

REAL,64 +INF 7FF000...0016 Positive Overload

-INF FFF000...0016 Negative Overload

NaN 7FFF...FF16 No Reading

PACKed,64 +INF 47D2 9EAD 3677 AF6F16
(+9.0E3710)

Positive Overload

-INF C7D2 9EAD 3677 AF6F16
(-9.0E3710)

Negative Overload

NaN 47D2 A37D CED4 614316
(+9.91E3710)

No Reading

Usage FORMAT REAL Set format to IEEE 32-bit Floating Point

FORM REAL, 64 Set format to IEEE 64-bit Floating Point

FORMAT ASCII, 7 Set format to 7-bit ASCII

FORMat[:DATA]?

FORMat[:DATA]? returns the currently set response data format for readings.

Comments • Returned Value: Returns REAL, +32 | REAL, +64 | PACK, +64 | ASC, +7. The
C-SCPI type is string, int16.

FORMat

234 HP E1419 Command Reference Chapter 6

• Related Commands: FORMAT

• *RST Condition: ASCII, 7

Usage FORMAT? Returns REAL, +32 | REAL, +64 | PACK,
+64 | ASC, +7

FORMat

Chapter 6 HP E1419 Command Reference 235

INITiate

The INITiate command subsystem moves the HP E1419 from the Trigger Idle State
to the Waiting For Trigger State. When initiated, the instrument is ready to receive
one (:IMMediate) or more (depending on TRIG:COUNT) trigger events. On each
trigger, the module will perform one control cycle which includes reading analog
and digital input channels (Input Phase), executing all defined algorithms (Calculate
Phase), and updating output channels (Output Phase). See the TRIGger subsystem to
specify the trigger source and count.

Subsystem Syntax INITiate
[:IMMediate]

INITiate[:IMMediate]

INITiate[:IMMediate] changes the trigger system from the Idle state to the Wait For
Trigger state. When triggered, one or more (depending on TRIGger:COUNt) trigger
cycles occur and the instrument returns to the Trigger Idle state.

Comments • INIT:IMM clears the FIFO and Current Value Table.

• If a trigger event is received before the instrument is Initiated, a -211 "Trigger
ignored" error is generated.

• If another trigger event is received before the instrument has completed the
current trigger cycle (measurement scan), the Questionable Data Status bit 9 is set
and a +3012 "Trigger too fast" error is generated.

• Sending INIT while the system is still in the Wait for Trigger state (already
INITiated) will cause an error -213,"Init ignored".

• Sending the ABORt command send the trigger system to the Trigger Idle state
when the current input-calculate-output cycle is completed.

• If updates are pending, they are made prior to beginning the Input phase.

• When Accepted: Not while INITiated

• Related Commands: ABORt, CONFigure, TRIGger

• *RST Condition: Trigger system is in the Idle state.

Usage INIT Both versions same function

INITIATE:IMMEDIATE

236 HP E1419 Command Reference Chapter 6

INPut

The INPut subsystem controls configuration of programmable input Signal
Conditioning Plug-Ons (SCPs).

Subsystem Syntax INPut
:DEBounce

:TIME <time>,(@<ch_list>)
:FILTer

[:LPASs]
:FREQuency <cutoff_freq>,(@<ch_list>)
:FREQuency? (@<channel>)
[:STATe] 1 | 0 | ON | OFF,(@<channel>)
[:STATe]? (@<channel>)

:GAIN <chan_gain>,(@<ch_list>)
:GAIN? (@<channel>)
:LOW <wvolt_type>,(@<ch_list>)
:LOW? (@<channel>)
:POLarity NORMal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)
:THReshold

LEVel? (@<channel>)

INPut:DEBounce:TIME

INPut:DEBounce:TIME <time>,(@<ch_list>) sets the debounce time on the
specified digital input channels.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

time numeric (float32)
(string)

see comment |
MIN | MAX

Hz

ch_list channel list (string) 132 - 163 none

Comments • For a description of the debounce function see "Debounce Function" in the
HP E1536 SCP manual. The HP E1536A has two debounce timers. One for the
lower four channels, and one for the upper four channels. To set the debounce
timers use the command:
INPut:DEBounce:TIME <time>,(@<ch_list>)

Chapter 6 HP E1419 Command Reference 237

• <time> can be one of 16 possible numeric values or MIN and MAX:

0 150 µS 300 µS 600 µS

1.2 mS 2.4 mS 4.8 mS 9.6 mS

19.2 mS 38.4 mS 76.6 mS 153.6 mS

307.2 mS 614.4 mS 1.2288 S 2.4576 S

– Sending 0 or MIN turns debounce off. Sending MAX selects 2.458 seconds.

– If a value is sent that is slightly greater than one of these values, the next
higher value (or MAX) is selected. Values outside of the range 0 - 2.4576 will
generate the error -222, "Data out of range".

• Since the HP E1536 has two debounce timers (one for each bank of 4 channels)
<ch_list> must contain all 4 of the upper-bank channels, or all 4 of the lower-bank
channels, or all 8 channels for a given SCP. This is because the HP E1536 has two
debounce timers, one for its lower 4 channels and one for its upper 4 channels.

Note The INP:DEB:TIME generate the error 3108, "E1536 debounce - each referenced 4
Ch bank must contain at least one input". This error indicates that <ch_list>
referenced a bank of channels that contains no input configured channel.

• Usage: To set the debounce period to 153.6 msec for the lower 4 channels on an
HP E1536A in SCP position 0 send:

INP:DEB 0.1536,(@100:103)

To set the debounce period to 1.229 seconds for the upper 4 channels on an
HP E1536A in SCP position 3 send:

INP:DEB 1.229,(@128:131)

• There is also the query form; INPut:DEBounce:TIME? (@<channel>)
where <channel> must specify a single channel. INP:DEB:TIME? returns the
currently set debounce period.

INPut:FILTer[:LPASs]:FREQuency

INPut:FILTer[:LPASs]:FREQuency <cutoff_freq>,(@<ch_list>) sets the cutoff
frequency of the filter on the specified channels.

INPut

238 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

cutoff_freq numeric (float32)
(string)

see comment |
MIN | MAX

Hz

ch_list channel list (string) 132 - 163 none

Comments • cutoff_freq may be specified in killoHertz (khz). A programmable Filter SCP has
a choice of several discrete cutoff frequencies. The cutoff frequency set will be the
one closest to the value specified by cutoff_freq. Refer to Chapter 6 for specific
information on the SCP you are programming.

• Sending MAX for the cutoff_freq selects the SCP’s highest cutoff frequency.
Sending MIN for the cutoff_freq selects the SCP’s lowest cutoff frequency. To
disable filtering (the "pass through" mode), execute the INP:FILT:STATE OFF
command.

• Sending a value greater than the SCP’s highest cutoff frequency or less than the
SCP’s lowest cutoff frequency generates a -222 "Data out of range" error.

• When Accepted: Not while INITiated

• Related Commands: INP:FILT:FREQ?, INP:FILT:STAT ON | OFF

• *RST Condition: set to MIN

Usage INP:FILT:FREQ 100,(@140:143) Set cutoff frequency of 100 Hz for
channels 40 through 43

INPUT:FILTER:FREQ 2,(@155) Set cutoff frequency of 2 Hz for channel 55

INPut:FILTer[:LPASs]:FREQuency?

INPut:FILTer[:LPASs]:FREQuency? (@<channel>) returns the cutoff frequency
currently set for channel. Non-programmable SCP channels may be queried to
determine their fixed cutoff frequency. If the channel is not on an input SCP, the
query will return zero.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • channel must specify a single channel only.

• This command is for programmable filter SCPs only.

INPut

Chapter 6 HP E1419 Command Reference 239

• Returned Value: Numeric value of Hz as set by the INP:FILT:FREQ command.
The C-SCPI type is float32.

• When Accepted: Not while INITiated

• Related Commands: INP:FILT:LPAS:FREQ, INP:FILT:STATE

• *RST Condition: MIN

Usage INPUT:FILTER:LPASS:FREQUENCY? (@155)Check cutoff freq on channel 55

INP:FILT:FREQ? (@100) Check cutoff freq on channel 0

INPut:FILTer[:LPASs][:STATe]

INPut:FILTer[:LPASs][:STATe] <enable>,(@<ch_list>) enables or disables a
programmable filter SCP channel. When disabled (enable=OFF), these channels are
in their "pass through" mode and provide no filtering. When re-enabled
(enable=ON), the SCP channel reverts to its previously programmed setting.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list channel list (string) 132 - 163 none

Comments • If the SCP has not yet been programmed, ON enables the SCP’s default cutoff
frequency.

• When Accepted: Not while INITiated

• *RST Condition: ON

Usage INPUT:FILTER:STATE ON,(@132,134) Channels 32 and 34 return to previously set
(or default) cutoff frequency

INP:FILT OFF,(@132:139) Set channels 32-39 to "pass-through" state

INPut:FILTer[:LPASs][:STATe]?

INPut:FILTer[LPASs][:STATe]? (@<channel>) returns the currently set state of
filtering for the specified channel. If the channel is not on an input SCP, the query
will return zero.

INPut

240 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • Returned Value: Numeric value either 0 (off or "pass-through") or 1 (on). The
C-SCPI type is int16.

• channel must specify a single channel only.

Usage INPUT:FILTER:LPASS:STATE? (@115) Enter statement returns either 0 or 1

INP:FILT? (@115) Same as above

INPut:GAIN

INPut:GAIN <gain>,(@<ch_list>) sets the channel gain on programmable
amplifier Signal Conditioning Plug-Ons.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

gain numeric (float32)
discrete (string)

see comment |
MIN | MAX

none

ch_list channel list (string) 132 - 163 none

Comments • A programmable amplifier SCP has a choice of several discrete gain settings. The
gain set will be the one closest to the value specified by gain. Refer to your SCP
manual for specific information on the SCP you are programming. Sending MAX
will program the highest gain available with the SCP installed. Sending MIN will
program the lowest gain.

• Sending a value for gain that is greater than the highest or less than the lowest
setting allowable for the SCP will generate a -222 "Data out of range" error.

• When Accepted: Not while INITiated

• Related Commands: INP:GAIN?

• *RST Condition: gain set to MIN

Usage INP:GAIN 8,(@140:147) Set gain of 8 for channels 40 through 47

INPUT:GAIN 64,(@155) Set gain of 64 for channel 55

INPut

Chapter 6 HP E1419 Command Reference 241

INPut:GAIN?

INPut:GAIN? (@<channel>) returns the gain currently set for channel. If the
channel is not on an input SCP, the query will return zero.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • channel must specify a single channel only.

• If the channel specified does not have a programmable amplifier, INP:GAIN? will
return the nominal as-designed gain for that channel.

• Returned Value: Numeric value as set by the INP:GAIN command. The C-SCPI
type is float32.

• When Accepted: Not while INITiated

• Related Commands: INP:GAIN

• *RST Condition: gain set to 1

Usage INPUT:GAIN? (@105) Check gain on channel 5

INP:GAIN? (@100) Check gain on channel 0

INPut:LOW

INPut:LOW <wvolt_type>,(@<ch_list>) controls the connection of input LO at a
Strain Bridge SCP channel specified by <ch_list>. LO can be connected to the
Wagner Voltage ground or left floating.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

wvolt_type discrete (string) FLOat | WVOLtage none

ch_list channel list (string) 132 - 163 none

Comments • Related Commands: INP:LOW?

• *RST Condition: INP:LOW FLOAT (all HP E1511 channels)

Usage INP:LOW WVOL (@132:139,148:155) connect LO of channels 32 through 39 and
48 through 55 to Wagner Ground.

INPut

242 HP E1419 Command Reference Chapter 6

INPut:LOW?

INPut:LOW? (@<channel>) returns the LO input configuration for the channel
specified by <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 132 - 163 none

Comments • channel must specify a single channel only.

• Returned Value: Returns FLO or WV. The C-SCPI type is string.

• Related Commands: INP:LOW

Usage INP:LOW? (@148) enter statement will return either FLO or
WV for channel 48

INPut:POLarity

INPut:POLarity <mode>,<ch_list> sets logical input polarity on a digital SCP
channel.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

mode discrete (string) NORMal | INVerted none

ch_list string 132 - 163 none

Comments • If the channels specified are on an SCP that doesn’t support this function, an error
will be generated. See your SCP’s User’s Manual to determine its capabilities.

• Related Commands: for output sense; SOURce:PULSe:POLarity

• *RST Condition: INP:POL NORM for all digital SCP channels.

Usage INP:POL INV,(@140:143) invert first 4 channels on SCP at SCP
position 5. Channels 40 through 43

INPut:POLarity?

INPut:POLarity? <channel> returns the logical input polarity on a digital SCP
channel.

INPut

Chapter 6 HP E1419 Command Reference 243

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • <channel> must specify a single channel.

• If the channel specified is on an SCP that doesn’t support this function, an error
will be generated. See your SCP’s User’s Manual to determine its capabilities.

• Returned Value: returns "NORM" or "INV". The type is string.

INPut:THReshold:LEVel?

INPut:THReshold:LEVel (@<channel>) returns the currently set input threshold
level.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • Channel must specify a single channel

• For the HP E1536 Isolated Digital I/O SCP, INP:THR:LEV? returns a numeric
value which is one of 5, 12, 24, 48, or 0 (zero) where zero means that the channel
is configured as an output and non-zero values indicate the input threshold in volts.

Note If an invalid switch combination is set on an HP E1536, INP:THR:LEV? will NOT
return a value and will generate the error 3105 "Invalid SCP switch setting". This
error will also be generated when *RST is executed. Channels associated with this
error will behave as input channels with unknown threshold levels.

• Usage: To query the threshold level on the second channel at SCP position 2 send:

INP:THR:LEV? (@117) query 2nd chan on SCP pos. 2

enter statement here returns 0 | 5 | 12 | 24 | 48

INPut

244 HP E1419 Command Reference Chapter 6

MEMory

The MEMory subsystem allows using VME memory as an additional reading
storage buffer.

Subsystem Syntax MEMory
:VME

:ADDRess <A24_address>
:ADDRess?
:SIZE <mem_size>
:SIZE?
:STATe 1 | 0 | ON | OFF
:STATe?

NOTE This subsystem is only available in systems using an HP E1405B or HP E1406A
command module.

Use Sequence *RST

MEM:VME:ADDR #H300000

MEM:VME:SIZE #H100000 1M byte or 262144 readings

MEM:VME:STAT ON

*

 * (set up E1419 for scanning)

 *

TRIG:SOUR IMM let unit trigger on INIT

INIT

*OPC? program execution remains here until VME
memory is full or the HP E1419 has stopped
taking readings

FORM REAL,64 affects only the return of data

FETCH? return data from VME memory

NOTE When using the MEM subsystem, the module must be triggered before executing the
INIT command (as shown above) unless you are using an external trigger (EXT
trigger). When using EXT trigger, the trigger can occur at any time.

Chapter 6 HP E1419 Command Reference 245

MEMory:VME:ADDRess

MEMory:VME:ADDRess <A24_address> sets the A24 address of the VME
memory card to be used as additional reading storage.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

A24_address numeric valid A24 address none

Comments • This command is only available in systems using an HP E1405B or HP E1406A
command module.

• The default (if MEM:VME:ADDR not executed) is 24000016.

• A24_address may be specified in decimal, hex (#H), octal (#Q), or binary (#B).

• Related Commands: MEMory subsystem, FORMat, and FETCH?

• *RST Condition: VME memory address starts at 20000016. When using an HP
E1405/6 command module, the first HP E1419 occupies 20000016 - 23FFFF16.

Usage MEM:VME:ADDR #H400000 Set the address for the VME memory card to
be used as reading storage

MEMory:VME:ADDRess?

MEMory:VME:ADDRess? returns the address specified for the VME memory card
used for reading storage.

Comments • Returned Value: numeric.

• This command is only available in systems using an HP E1405B or HP E1406A
command module.

• Related Commands: MEMory subsystem, , FORMat, and FETCH?

Usage MEM:VME:ADDR? Returns the address of the VME memory
card.

MEMory:VME:SIZE

MEMory:VME:SIZE <mem_size> Specifies the number of bytes of VME memory
to allocate for additional reading storage.

MEMory

246 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

mem_size numeric to limit of available VME memory none

Comments • This command is only available in systems using an HP E1405B or HP E1406A
command module.

• mem_size may be specified in decimal, hex (#H), octal (#Q), or binary(#B).

• mem_size should be a multiple of four (4) to accommodate 32 bit readings.

• Related Commands: MEMory subsystem, FORMAT, and FETCH?

• *RST Condition: MEM:VME:SIZE 0

Usage MEM:VME:SIZE 32768 Allocate 32 Kbytes of VME memory to
reading storage (8192 readings)

MEMory:VME:SIZE?

MEMory:VME:SIZE? returns the amount (in bytes) of VME memory allocated to
reading storage.

Comments • This command is only available in systems using an HP E1405B or HP E1406A
command module.

• Returned Value: Numeric.

• Related Commands: MEMory subsystem, and FETCH?

Usage MEM:VME:SIZE? Returns the number of bytes allocated to
reading storage.

MEMory:VME:STATe

MEMory:VME:STATe <enable> enables or disables use of the VME memory card
as additional reading storage.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

Comments • This command is only available in systems using an HP E1405B or HP E1406A
command module.

MEMory

Chapter 6 HP E1419 Command Reference 247

• When the VME memory card is enabled, the INIT command does not terminate
until data acquisition stops or VME memory is full.

• Related Commands: Memory subsystem, and FETCH?

• *RST Condition: MEM:VME:STAT OFF

Usage MEMORY:VME:STATE ON enable VME card as reading storage

MEM:VME:STAT 0 Disable VME card as reading storage

MEMory:VME:STATe?

MEMory:VME:STATe? returned value of 0 indicates that VME reading storage is
disabled. Returned value of 1 indicates VME memory is enabled.

Comments • This command is only available in systems using an HP E1405B or HP E1406A
command module.

• Returned Value: Numeric 1 or 0. C-SCPI type uint16.

• Related Commands: MEMory subsystem, and FETCH?

Usage MEM:VME:STAT? Returns 1 for enabled, 0 for disabled

MEMory

248 HP E1419 Command Reference Chapter 6

OUTPut

The OUTPut subsystem is involved in programming source SCPs as well as
controlling the state of VXIbus TTLTRG lines 0 through 7.

Subsystem Syntax OUTPut
:CURRent

:AMPLitude <amplitude>,(@<ch_list>)
:AMPLitude? (@<channel>)
[:STATe] 1 | 0 | ON | OFF,(@<ch_list>)
[:STATe]? (@<channel>)

:POLarity NORMal | INVerted,(@<ch_list>)
:POLarity? (@<channel>)
:SHUNt 1 | 0 | ON | OFF,(@<ch_list>)
:SHUNt? (@<channel>)
:TTLTrg

:SOURce TRIGger | FTRigger | SCPlugon | LIMit
:SOURce?

:TTLTrg<n>
[:STATe] 1 | 0 | ON | OFF
[:STATe]?

:TYPE PASSive | ACTive,(@<ch_list>)
:TYPE? (@<channel>)
:VOLTage

 :AMPLitude <amplitude>,(@<ch_list>)
 :AMPLitude? (@<channel>)

OUTPut:CURRent:AMPLitude

OUTPut:CURRent:AMPLitude <amplitude>,(@<ch_list>) sets the HP E1505
Current Source SCP channels specified by ch_list to either 488 µA, or 30 µA. This
current is typically used for four-wire resistance and resistance temperature
measurements.

NOTE This command does not set current amplitude on SCPs like the HP E1532 Current
Output SCP.

Chapter 6 HP E1419 Command Reference 249

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

amplitude numeric (float32) MIN | 30E-6 | MAX | 488E-6 ADC

ch_list channel list (string) 132 - 163 none

Comments • Select 488E-6 (or MAX) for measuring resistances of less than 8000 Ohms. Select
30E-6 (or MIN) for resistances of 8000 Ohms and above. amplitude may be
specified in µA (ua).

• For resistance temperature measurements ([SENSe:]FUNCtion:TEMPerature) the
Current Source SCP must be set as follows:

Required Current
Amplitude

Temperature Sensor Types and
Subtypes

MAX (488µA)
MIN (30µA)

RTD,85 | 92 and THER,2250
THER,5000 | 10000

• When *CAL? is executed, the current sources are calibrated on the range selected
at that time.

• When Accepted: Not while INITiated

• Related Commands: *CAL?, OUTP:CURR:AMPL?

• *RST Condition: MIN

Usage OUTP:CURR:AMPL 488ua,(@140:147) Set Current Source SCP at channels 40
through 47 to 488 µA

OUTP:CURR:AMPL 30E-6,(@148) Set Current Source SCP at ch 48 to 30 µA

OUTPut:CURRent:AMPLitude?

OUTPut:CURRent:AMPLitude? (@<channel>) returns the range setting of the
Current Source SCP channel specified by channel.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 132 - 163 none

Comments • channel must specify a single channel only.

• If channel specifies an SCP which is not a Current Source, a +3007, "Invalid
signal conditioning plug-on" error is generated.

OUTPut

250 HP E1419 Command Reference Chapter 6

• Returned Value: Numeric value of amplitude set. The C-SCPI type is float32.

• Related Commands: OUTP:CURR:AMPL

Usage OUTP:CURR:AMPLITUDE? (@140) Check SCP current set for channel 40
(returns +3.0E-5 or +4.88E-4)

OUTPut:CURRent[:STATe]

OUTPut:CURRent[:STATe] <enable>,(@<ch_list>) enables or disables current
source on channels specified in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list channel list (string) 132 - 163 none

Comments • OUTP:CURR:STAT does not affect a channel’s amplitude setting. A channel that
has been disabled, when re-enabled sources the same current set by the previous
OUTP:CURR:AMPL command.

• OUTP:CURR:STAT is most commonly used to turn off excitation current to
four-wire resistance (and resistance temperature device) circuits during execution
of CAL:TARE for those channels.

• When Accepted: Not while INITiated

• Related Commands: OUTP:CURR:AMPL, CAL:TARE

• *RST Condition: OUTP:CURR OFF (all channels)

Usage OUTP:CURR OFF,(@140,147) turn off current source channels 40 and 47

OUTPut:CURRent[:STATe]?

OUTPut:CURRent[:STATe]? (@<channel>) returns the state of the Current
Source SCP channel specified by <channel>. If the channel is not on an HP E1505
Current Source SCP, the query will return zero.

OUTPut

Chapter 6 HP E1419 Command Reference 251

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 132 - 163 none

Comments • channel must specify a single channel only.

• Returned Value: returns 1 for enabled, 0 for disabled. C-SCPI type is uint16.

• Related Commands: OUTP:CURR:STATE, OUTP:CURR:AMPL

Usage OUTP:CURR? (@147) query for state of Current SCP channel 47

execute enter statement here enter query value, either 1 or 0

OUTPut:POLarity

OUTPut:POLarity <select>,(@<ch_list>) sets the polarity on digital output
channels in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

select discrete (string) NORMal | INVerted none

ch_list string 132 - 163 none

Comments • If the channels specified do not support this function, an error will be generated.

• Related Commands: INPut:POLarity, OUTPut:POLarity?

• *RST Condition: OUTP:POL NORM for all digital channels

Usage OUTP:POL INV,(@156) invert output logic sense on channel 56

OUTPut:POLarity?

OUTPut:POLarity? (@<channel>) returns the polarity on the digital output channel
in <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • Channel must specify a single channel

OUTPut

252 HP E1419 Command Reference Chapter 6

• Returned Value: returns one of NORM or INV. The type is string.

OUTPut:SHUNt

OUTPut:SHUNt <enable>,(@<ch_list>) adds shunt resistance to one leg of bridge
on Strain Bridge Completion SCPs. This can be used for diagnostic purposes and
characterization of bridge response.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable boolean (uint16) 0 | 1 | ON | OFF none

ch_list channel list (string) 132 - 163 none

Comments • If ch_list specifies a non strain SCP, a 3007 "Invalid signal conditioning plug-on"
error is generated.

• When Accepted: Not while INITiated

• Related Commands: [SENSe:]FUNCtion:STRain…, [SENSe:]STRain…

• *RST Condition: OUTP:SHUNT 0 on all Strain SCP channels

Usage OUTP:SHUNT 1,(@148:151) add shunt resistance at channels 48 - 51

OUTPut:SHUNt?

OUTPut:SHUNt? (@<channel>) returns the status of the shunt resistance on the
specified Strain SCP channel.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 132 - 163 none

Comments • channel must specify a single channel only.

• If channel specifies a non strain SCP, a 3007 "Invalid signal conditioning
plug-on" error is generated.

• Returned Value: Returns 1 or 0. The C-SCPI type is uint16.

• Related Commands: OUTP:SHUNT

OUTPut

Chapter 6 HP E1419 Command Reference 253

Usage OUTPUT:SHUNt? (@151) Check status of shunt resistance on
channel 51

OUTPut:TTLTrg:SOURce

OUTPut:TTLTrg:SOURce <trig_source> selects the internal source of the trigger
event that will operate the VXIbus TTLTRG lines.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

trig_source discrete (string) ALGorithm | TRIGger | FTRigger | SCPlugon none

Comments • The following table explains the possible choices.

Parameter Value Source of Trigger

ALGorithm Generated by the Algorithm Language function
"interrupt()"

FTRigger Generated on the First Trigger of a multiple "counted
scan" (set by TRIG:COUNT <trig_count>)

SCPlugon Generated by a Signal Conditioning Plug-on (SCP). Do
not use this when Sample-and-Hold SCPs are installed.

TRIGger Generated every time a scan is triggered (see
TRIG:SOUR <trig_source>)

• FTRigger (First TRigger) is used to generate a single TTLTRG output when
repeated triggers are being used to make multiple executions of the enabled
algorithms. The TTLTRG line will go low (asserted) at the first trigger event and
stay low through subsequent triggers until the trigger count (as set by
TRIG:COUNT) is exhausted. At this point the TTLTRG line will return to its high
state (de-asserted). This feature can be used to signal when the HP E1419 has
started running its control algorithms.

• Related Commands: OUTP:TTLT<n>[:STATE], OUTP:TTLT:SOUR?,
TRIG:SOUR, TRIG:COUNT

• *RST Condition: OUTP:TTLT:SOUR TRIG

Usage OUTP:TTLT:SOUR TRIG toggle TTLTRG line every time module is
triggered (use to trigger other HP E1419s)

OUTPut:TTLTrg:SOURce?

OUTPut:TTLTrg:SOURce? returns the current setting for the TTLTRG line source.

Comments • Returned Value: Discrete, one of; TRIG, FTR, or SCP. C-SCPI type is string.

OUTPut

254 HP E1419 Command Reference Chapter 6

• Related Commands: OUTP:TTLT:SOUR

Usage OUTP:TTLT:SOUR? enter statement will return on of FTR, SCP,
or TRIG

OUTPut:TTLTrg<n>[:STATe]

OUTPut:TTLTrg<n>:STATe <ttltrg_cntrl> specifies which VXIbus TTLTRG line
is enabled to source a trigger signal when the module is triggered. TTLTrg<n> can
specify line 0 through 7. For example, …:TTLTRG4, or TTLT4 for VXIbus
TTLTRG line 4.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ttltrg_cntrl boolean (uint16) 1 | 0 | ON | OFF none

Comments • Only one VXIbus TTLTRG line can be enabled simultaneously.

• When Accepted: Not while INITiated

• Related Commands: ABORT, INIT…, TRIG…

• *RST Condition: OUTPut:TTLTrg<0 through 7> OFF

Usage OUTP:TTLT2 ON Enable TTLTRG2 line to source a trigger

OUTPUT:TTLTRG7:STATE ON Enable TTLTRG7 line to source a trigger

OUTPut:TTLTrg<n>[:STATe]?

OUTPut:TTLTrg<n>[:STATe]? returns the current state for TTLTRG line <n>.

Comments • Returned Value: Returns 1 or 0. The C-SCPI type is int16.

• Related Commands: OUTP:TTLT<n>

Usage OUTP:TTLT2? See if TTLTRG2 line is enabled (returns 1
or 0)

OUTPUT:TTLTRG7:STATE? See if TTLTRG7 line is enabled

OUTPut:TYPE

OUTPut:TYPE <select>,(@<ch_list>) sets the output drive characteristic for digital
SCP channels.

OUTPut

Chapter 6 HP E1419 Command Reference 255

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

select discrete (string) PASSive | ACTive seconds

ch_list string 132 - 163 none

Comments • If the channels specified are on an SCP that doesn’t support this function an error
will be generated. See your SCP’s User’s Manual to determine its capabilities.

• PASSive configures the digital channel/bit to be passive (resistor) pull-up to allow
you to wire-or more than one output together.

• ACTive configures the digital channel/bit to both source and sink current.

• Related Commands: SOURce:PULSe:POLarity, OUTPut:TYPE?

• *RST Condition: OUTP:TYPE ACTIVE (for TTL compatibility)

Usage OUTP:TYPE PASS,(@156:159) make channels 56 to 59 passive pull-up

OUTPut:TYPE?

OUTPut:TYPE? <channel> returns the output drive characteristic for a digital
channel.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • Channel must specify a single channel.

• If the channel specified is not on a digital SCP, an error will be generated.

• Returned Value: returns PASS or ACT. The type is string.

• *RST Condition: returns ACT

OUTPut:VOLTage:AMPLitude

OUTPut:VOLTage:AMPLitude <amplitude>,(@<ch_list>) sets the excitation
voltage on programmable Strain Bridge Completion SCPs pointed to by <ch_list>
(the HP E1511 for example). This command is not used to set output voltage on
SCPs like the HP E1531 Voltage Output SCP.

OUTPut

256 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

amplitude numeric (float32) MIN | 0 |1 | 2 | 5 | 10 | MAX none

ch_list channel list (string) 132 - 163 none

Comments • To turn off excitation voltage (when using external voltage source) program
amplitude to 0.

• Related Commands: OUTP:VOLT:AMPL?

• *RST Condition: MIN (0)

Usage OUTP:VOLT:AMPL 5,(@132:135) set excitation voltage for channels 32 - 35

OUTPut:VOLTage:AMPLitude?

OUTPut:VOLTage:AMPLitude? (@<channel>) returns the current setting of
excitation voltage for the channel specified by <channel>. If the channel is not on an
HP E1511 SCP, the query will return zero.

Comments • channel must specify a single channel only.

• Returned Value: Numeric, one of 0, 1, 2 ,5, or 10. C-SCPI type is float32.

• Related Commands: OUTP:VOLT:AMPL

Usage OUTP:VOLT:AMPL? (@135) returns current setting of excitation voltage
for channel 3

OUTPut

Chapter 6 HP E1419 Command Reference 257

ROUTe

The ROUTe subsystem provides a method to query the overall channel list
definition for its sequence of channels.

Subsystem Syntax ROUTe
:SEQuence

:DEFine?
:POINts?

ROUTe:SEQuence:DEFine?

ROUTe:SEQuence:DEFine? <type> returns the sequence of channels defined in the
scan list.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

type (string) AIN | AOUT | DIN | DOUT none

Comments • The channel list contents and sequence are determined primarily by channel
references in the algorithms currently defined. The SENS:REF:CHANNELS, and
SENS:CHAN:SETTLING commands also effect the scan list contents.

• The <type> parameter selects which channel list will be queried:

"AIN" selects the Analog Input channel list (this is the Scan List).
"AOUT" selects the Analog Output channel list.
"DIN" selects the Digital Input channel list.
"DOUT" selects the Digital Output channel list.

• Returned Value: Definite Length Arbitrary Block Data format. This data return
format is explained in "Arbitrary Block Program Data" on page 6-185 of this
chapter. Each value is 2 bytes in length (the C-SCPI data type is an int16 array).

• *RST Condition: To supply the necessary time delay before Digital inputs are
read, the analog input (AIN) scan list contains eight entries for channel 0
(100).This minimum delay is maintained by replacing these default channels as
others are defined in algorithms. After algorithm definition, if some delay is still
required, there will be repeat entries of the last channel referenced by an
algorithm. The three other lists contain no channels.

Usage ROUT:SEQ:DEF? AIN query for analog input (Scan List) sequence

258 HP E1419 Command Reference Chapter 6

ROUTe:SEQuence:POINts?

ROUTe:SEQuence:POINts? <type> returns the number of channels defined in each
of the four channel list types.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

type (string) AIN | AOUT | DIN | DOUT none

Comments • The channel list contents and sequence are determined by channel references in
the algorithms currently defined.

• The <type> parameter selects which channel list will be queried:

"AIN" selects the Analog Input list.
"AOUT" selects the Analog Output list.
"DIN" selects the Digital Input list.
"DOUT" selects the Digital Output list.

• Returned Value: Numeric. The C_SCPI type is int16.

• *RST Condition: The Analog Input list returns +8, the others return +0.

Usage ROUT:SEQ:POINTS? AIN query for analog input channel count

ROUTe

Chapter 6 HP E1419 Command Reference 259

SAMPle

The SAMPle subsystem provides commands to set and query the interval between
channel measurements (pacing).

Subsystem Syntax SAMPle
:TIMer <interval>
:TIMer?

SAMPle:TIMer

SAMPle:TIMer <interval> sets the time interval between channel measurements. It
is used to provide additional channel settling time. See "Settling Characteristics"
discussion on page 3-104.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

interval numeric (float32)
(string)

1.0E-5 to 16.3825E-3 |
MIN | MAX

seconds

Comments • The minimum interval is 10 µ seconds. The resolution for interval is 2.5 µsecond.

• If the Sample Timer interval multiplied by the number of channels in the specified
Scan List is longer than the Trigger Timer interval, at run time a "Trigger too fast"
error will be generated.

• the SAMP:TIMER interval can change the effect of the SENS:CHAN:SETTLING
command. ALG:CHAN:SETT specifies the number of times a channel
measurement should be repeated. The total settling time per channel then is
(SAMP:TIMER <interval>) X (<chan_repeats> from SENS:CHAN:SETT)

• When Accepted: Not while INITiated

• Related Commands: SENSE:CHAN:SETTLING, SAMP:TIMER?

• *RST Condition: Sample Timer for all Channel Lists set to 1.0E-5 seconds.

Usage SAMPLE:TIMER 50E-6 Pace measurements at 50µsecond intervals

SAMPle:TIMer?

SAMPle:TIMer? returns the sample timer interval.

260 HP E1419 Command Reference Chapter 6

Comments • Returned Value: Numeric. The C-SCPI type is float32.

• Related Commands: SAMP:TIMER

• *RST Condition: Sample Timer set to 1.0E-5 seconds.

Usage SAMPLE:TIMER? Check the interval between channel
measurements

SAMPle

Chapter 6 HP E1419 Command Reference 261

[SENSe]

Subsystem Syntax [SENSe:]
:CHANnel

:SETTling <settle_time>,(@<ch_list>)
:SETTling? (@<channel>)

DATA
:CVTable? (@<element_list>)

:RESet
:FIFO

[:ALL]?
:COUNt?

:HALF?
:HALF?
:MODE BLOCk | OVERwrite
:MODE?
:PART? <n_values>
:RESet

FREQuency:APERture <gate time>,<ch_list>
FREQuency:APERture? <channel>
FUNCtion

:CONDition (@<ch_list>)
:CUSTom [<range>,](@<ch_list>)

:REFerence [<range>,](@<ch_list>)
:TC <type>,[<range>,](@<ch_list>)

:FREQuency (@<ch_list>)
:RESistance <excite_current>,[<range>,](@<ch_list>)
:STRain

:FBENding [<range>,](@<ch_list>)
:FBPoisson [<range>,](@<ch_list>)
:FPOisson [<range>,](@<ch_list>)
:HBENding [<range>,](@<ch_list>)
:HPOisson [<range>,](@<ch_list>)
[:QUARter] [<range>,](@<ch_list>)

:TEMPerature <sensor_type>,<sub_type>,[<range>,](@<ch_list>)
:TOTalize (@<ch_list>)
:VOLTage[:DC] [<range>,](@<ch_list>)

REFerence <sensor_type>, [<sub_type>,](@<ch_list>)
:CHANnels (@<ref_channel>),(@<ch_list>)
:TEMPerature <degrees_celsius>

STRain
:EXCitation <excite_v>,(@<ch_list>)
:EXCitation? (@<channel>)
:GFACtor <gage_factor>,(@<ch_list>)
:GFACtor? (@<channel>)
:POISson <poisson_ratio>,(@<ch_list>)

262 HP E1419 Command Reference Chapter 6

:POISson? (@<channel>)
:UNSTrained <unstrained_v>,(@<ch_list>)
:UNSTrained? (@<channel>)

TOTalize:RESet:MODE INIT | TRIGger,(@<ch_list>)
TOTalize:RESet:MODE? (@<channel>)

[SENSe:]CHANnel:SETTling

[SENSe:]CHANnel:SETTling <num_samples>,<ch_list> specifies the number of
measurement samples to make on channels in <ch_list>. SENS:CHAN:SETTLING
is used to provide additional settling time only to selected channels that might need
it. See the "Settling Characteristics" discussion on page 3-104.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

settle_time numeric (int16) 1 to 64 none

ch_list string 100 - 163 none

Comments • SENS:CHAN:SETTLING causes each channel specified in <ch_list> that is also
referenced in an algorithm to appear <num_samples> times in the analog input
Scan List. Channels that do not appear in any SENS:CHAN:SETT command will
be entered into the scan list only once when referenced in an algorithm.

• Since the scan list is limited to 64 entries, an error will be generated if the number
of channels referenced in algorithms plus the additional entries from any
SENS:CHAN:SETTLING commands that coincide with algorithm referenced
channels exceeds 64.

• The SAMPLE:TIMER command can change the effect of the
SENS:CHAN:SETTLING command since SAMPLE:TIMER changes the amount
of time for each measurement sample.

• When Accepted: Not while INITiated

• Related Commands: [SENSe:]CHANnel:SETTling?, SAMPLE:TIMER

• *RST Condition: SENS:CHAN:SETTLING 1,(@100:163)

Usage SENS:CHAN:SETT 4,(@144,156) settle channels 44 and 56 for 4
measurement periods

[SENSe]

Chapter 6 HP E1419 Command Reference 263

[SENSe:]CHANnel:SETTling?

[SENSe:]CHANnel:SETTling? <channel> returns the current number of samples
to make on <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 100 - 163 none

Comments • <channel> must specify a single channel.

• Related Commands: SENS:CHAN:SETT, SAMP:TIMER?

• *RST Condition: will return 1 for all channels.

• Returned Value: returns numeric number of samples, The type is int16.

[SENSe:]DATA:CVTable?

[SENSe:]DATA:CVTable? (@<element_list>) returns from the Current Value
Table the most recent values stored by algorithms.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

element_list channel list 10 - 511 none

Comments • [SENSe:]DATA:CVTable? (@<element_list>) allows you to "view" the latest
values of internal algorithm variables while algorithms are executing.

• The Current Value Table is an area in memory that can contain as many as 502
32-bit floating point values. Algorithms can copy any of their variable values into
these CVT elements while they execute. The algorithm statements to put data into
the CVT are:

writecvt(<expr>, <element_number>), and
writeboth(<expr>, <element_number>). See Chapters 3 and 4 for useage.

• Elements 0 through 9 are not accessible. They are used internally by the DSP.

• The format of values returned is set using the FORMat[:DATA] command

• Returned Value: ASCII values are returned in the form ±1.234567E±123. For
example 13.325 volts would be +1.3325000E+001. Each value is followed by a
comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value. The
C-SCPI data type is a string array.

[SENSe]

264 HP E1419 Command Reference Chapter 6

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987
Definite Length Arbitrary Block Data format. This data return format is explained
in "Arbitrary Block Program Data" on page 6-185 of this chapter. For REAL 32,
each value is 4 bytes in length (the C-SCPI data type is a float32 array). For
REAL 64 and PACK 64, each value is 8 bytes in length (the C-SCPI data type is a
float64 array).

NOTE After *RST/Power-on, each element in the CVT contains the IEEE-754 value
"Not-a-number" (NaN). Elements specified in the DATA:CVT? command that have
not been written to be an algorithm will return the value 9.91E37.

• *RST Condition: All elements of CVT contains IEEE-754 "Not a Number".

• Related Commands: SENS:DATA:CVT:RES, FORMAT:DATA

Usage SENS:DATA:CVT? (@10:13) Return algorithm values stored in CVT
elements 10 through 13

DATA:CVT? (@10,13) Return only element 10 and element 13

DATA:CVT? (@330:337,350,360) Return algorithm values from elements
330-337, 350, and 360

[SENSe:]DATA:CVTable:RESet

[SENSe:]DATA:CVTable:RESet sets all 502 Current Value Table entries to the
IEEE-754 "Not-a-number".

Comments • The value of NaN is +9.910000E+037 (ASCII).

• Executing DATA:CVT:RES while the module is INITiated will generate an error
3000, "Illegal while initiated".

• When Accepted: Not while INITiated

• Related Commands: SENSE:DATA:CVT?

• *RST Condition: SENSE:DATA:CVT:RESET

Usage SENSE:DATA:CVT:RESET Clear the Current Value Table

[SENSe]

Chapter 6 HP E1419 Command Reference 265

[SENSe:]DATA:FIFO[:ALL]?

[SENSe:]DATA:FIFO[:ALL]? returns all values remaining in the FIFO buffer until
all measurements are complete or until the number of values returned exceeds FIFO
buffer size (65,024).

Comments • DATA:FIFO? may be used to acquire all values (even while they are being made)
into a single large buffer, or can be used after one or more DATA:FIFO:HALF?
commands to return the remaining values from the FIFO.

• The format of values returned is set using the FORMat[:DATA] command.

• Returned Value: ASCII values are returned in the form ±1.234567E±123. For
example 13.325 volts would be +1.3325000E+001. Each value is followed by a
comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value. The
C-SCPI data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987
Indefinite Length Arbitrary Block Data format. This data return format is explained in
"Arbitrary Block Program Data" on page 6-185 of this chapter. For REAL 32, each
value is 4 bytes in length (the C-SCPI data type is a float32 array). For REAL 64 and
PACK 64, each value is 8 bytes in length (the C-SCPI data type is a float64 array).

NOTE Algorithm values which are a positive overvoltage return IEEE +INF and a negative
overvoltage return IEEE -INF (see table on page 6-234 for actual values for each
data format).

• Related Commands: SENSE:DATA:FIFO:HALF?, FORMAT:DATA

• *RST Condition: FIFO is empty

Usage DATA:FIFO? return all FIFO values until measurements
complete and FIFO empty

Command
Sequence

set up scan lists and trigger

SENSE:DATA:FIFO:ALL?

now execute read statement read statement does not complete until
triggered measurements are complete and
FIFO is empty

[SENSe:]DATA:FIFO:COUNt?

[SENSe:]DATA:FIFO:COUNt? returns the number of values currently in the FIFO
buffer.

[SENSe]

266 HP E1419 Command Reference Chapter 6

Comments • DATA:FIFO:COUNT? is used to determine the number of values to acquire with
the DATA:FIFO:PART? command.

• Returned Value: Numeric 0 through 65,024. The C-SCPI type is int32.

• Related Commands: DATA:FIFO:PART?

• *RST Condition: FIFO empty

Usage DATA:FIFO:COUNT? Check the number of values in the FIFO
buffer

[SENSe:]DATA:FIFO:COUNt:HALF?

[SENSe:]DATA:FIFO:COUNt:HALF? returns a 1 if the FIFO is at least half full
(contains at least 32,768 values), or 0 if FIFO is less than half-full.

Comments • DATA:FIFO:COUNT:HALF? is used as a fast method to poll the FIFO for the
half-full condition.

• Returned Value: Numeric 1 or 0. The C-SCPI type is int16.

• Related Commands: DATA:FIFO:HALF?

• *RST Condition: FIFO empty

Command
Sequence

DATA:FIFO:COUNT:HALF? poll FIFO for half-full status

DATA:FIFO:HALF? returns 32768 values

[SENSe:]DATA:FIFO:HALF?

[SENSe:]DATA:FIFO:HALF? returns 32,768 values if the FIFO buffer is at least
half-full. This command provides a fast means of acquiring blocks of values from
the buffer.

Comments • For acquiring data from continuous algorithm executions, your application needs
to execute a DATA:FIFO:HALF? command and a read statement often enough to
keep up with the rate that values are being sent to the FIFO.

• Use the DATA:FIFO:ALL? command to acquire the values remaining in the FIFO
buffer after the ABORT command has stopped execution.

• The format of values returned is set using the FORMat[:DATA] command.

• Returned Value: ASCII values are returned in the form ±1.234567E±123. For
example 13.325 volts would be +1.3325000E+001. Each value is followed by a

[SENSe]

Chapter 6 HP E1419 Command Reference 267

comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value. The
C-SCPI data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987
Definite Length Arbitrary Block Data format. This data return format is explained
in "Arbitrary Block Program Data" on page 6-185 of this chapter. For REAL 32,
each value is 4 bytes in length (the C-SCPI data type is a float32 array). For
REAL 64 and PACK 64, each value is 8 bytes in length (the C-SCPI data type is a
float64 array).

NOTE Algorithm values which are a positive overvoltage return IEEE +INF and a negative
overvoltage return IEEE -INF (see table on page 6-234 for actual values for each
data format).

• Related Commands: DATA:FIFO:COUNT:HALF?

• *RST Condition: FIFO buffer is empty

Command
Sequence

DATA:FIFO:COUNT:HALF? poll FIFO for half-full status

DATA:FIFO:HALF? returns 32768 values

[SENSe:]DATA:FIFO:MODE

[SENSe:]DATA:FIFO:MODE <mode> sets the mode of operation for the FIFO
buffer.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

mode discrete (string) BLOCk | OVERwrite none

Comments • In BLOCk(ing) mode, if the FIFO becomes full and measurements are still being
made, the new values are discarded.

• OVERwrite mode is used to record the latest 65,024 values. The module must be
halted (ABORT sent) before attempting to read the FIFO. In OVERwrite Mode, if
the FIFO becomes full and measurements are still being made, new values
overwrite the oldest values.

• In both modes Error 3021, "FIFO Overflow" is generated to let you know that
measurements have been lost.

• When Accepted: Not while INITiated

[SENSe]

268 HP E1419 Command Reference Chapter 6

• Related Commands: SENSE:DATA:FIFO:MODE?, SENSE:DATA:FIFO:ALL?,
SENSE:DATA:FIFO:HALF?, SENSE:DATA:FIFO:PART?,
SENSE:DATA:FIFO:COUNT?

• *RST Condition: SENSE:DATA:FIFO:MODE BLOCk

Usage SENSE:DATA:FIFO:MODE OVERWRITE Set FIFO to overwrite mode

DATA:FIFO:MODE BLOCK Set FIFO to block mode

[SENSe:]DATA:FIFO:MODE?

[SENSe:]DATA:FIFO:MODE? returns the currently set FIFO mode.

Comments • Returned Value: String value either BLOCK or OVERWRITE. The C-SCPI type
is string.

• Related Commands: SENSE:DATA:FIFO:MODE

Usage DATA:FIFO:MODE? Enter statement returns either BLOCK or
OVERWRITE

[SENSe:]DATA:FIFO:PART?

[SENSe:]DATA:FIFO:PART? <n_values> returns n_values from the FIFO buffer.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

n_values numeric (int32) 1 - 2,147,483,647 none

Comments • Use the DATA:FIFO:COUNT? command to determine the number of values in
the FIFO buffer.

• The format of values returned is set using the FORMat[:DATA] command.

• Returned Value: ASCII values are returned in the form ±1.234567E±123. For
example 13.325 volts would be +1.3325000E+001. Each value is followed by a
comma (,). A line feed (LF) and End-Or-Identify (EOI) follow the last value. The
C-SCPI data type is a string array.

REAL 32, REAL 64, and PACK 64, values are returned in the IEEE-488.2-1987
Definite Length Arbitrary Block Data format. This data return format is explained
in "Arbitrary Block Program Data" on page 6-185 of this chapter. For REAL 32,
each value is 4 bytes in length (the C-SCPI data type is a float32 array). For
REAL 64 and PACK 64, each value is 8 bytes in length (the C-SCPI data type is a
float64 array).

[SENSe]

Chapter 6 HP E1419 Command Reference 269

NOTE Algorithm values which are a positive overvoltage return IEEE +INF and a negative
overvoltage return IEEE -INF (see table on page 6-234 for actual values for each
data format).

• Related Commands: DATA:FIFO:COUNT?

• *RST Condition: FIFO buffer empty

Usage DATA:FIFO:PART? 256 return 256 values from FIFO

[SENSe:]DATA:FIFO:RESet

[SENSe:]DATA:FIFO:RESet clears the FIFO of values. The FIFO counter is reset
to 0.

Comments • When Accepted: Not while INITiated

• Related Commands: SENSE:DATA:FIFO…

• *RST Condition: SENSE:DATA:FIFO:RESET

Usage SENSE:DATA:FIFO:RESET Clear the FIFO

[SENSe:]FREQuency:APERture

[SENSe:]FREQuency:APERture <gate_time>,<ch_list> sets the gate time for
frequency measurement. The gate time is the time period that the SCP will allow for
counting signal transitions in order to calculate frequency.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

gate_time numeric (float32) .001 to 1 (.001 resolution) seconds

ch_list string 132 - 163 none

Comments • If the channels specified are on an SCP that doesn’t support this function, an error
will be generated. See your SCP’s User’s Manual for its capabilities.

• Related Commands: SENSe:FUNCtion:FREQuency

• *RST Condition: .001 sec

Usage SENS:FREQ:APER .01,(@148) set channel 48 aperture to 10msec

[SENSe]

270 HP E1419 Command Reference Chapter 6

[SENSe:]FREQuency:APERture?

[SENSe:]FREQuency:APERture? <ch_list> returns the frequency counting gate
time.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • If the channels specified are on an SCP that doesn’t support this function, an error
will be generated. See your SCP’s User’s Manual for its capabilities.

• Related Commands: SENSe:FREQuency:APERture

• Returned Value: returns numeric gate time in seconds, The type is float32.

[SENSe:]FUNCtion:CONDition

[SENSe:]FUNCtion:CONDition <ch_list> sets the SENSe function to input the
digital state for channels in <ch_list>. Also configures digital SCP channels as
inputs (this is the *RST condition for all digital I/O channels).

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ch_list string 132 - 163 none

Comments • The HP E1533 SCP senses 8 digital bits on each channel specified by this
command. The HP E1534 SCP senses 1 digital bit on each channel specified by
this command.

• If the channels specified are not on a digital SCP, an error will be generated.

• Use the INPut:POLarity command to set input logical sense.

• Related Commands: INPut:POLarity

• *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital SCP
channels.

Usage To set first four channels of a HP E1534 in SCP position 6, and second 8-bits of
HP E1533 at SCP position 7 to digital inputs send:

SENS:FUNC:COND (@148:151,156)

[SENSe]

Chapter 6 HP E1419 Command Reference 271

[SENSe:]FUNCtion:CUSTom

[SENSe:]FUNCtion:CUSTom [<range>,](@<ch_list>) links channels with the
custom Engineering Unit Conversion table loaded with the DIAG:CUST:LINEAR
or DIAG:CUST:PIECE commands. Contact your Hewlett-Packard System Engineer
for more information on Custom Engineering Unit Conversion for your application.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

range numeric (float32) see first comment VDC

ch_list channel list (string) 100 - 163 none

Comments • <range> parameter: The HP E1419 has five ranges: .0625VDC, .25VDC, 1VDC,
4VDC, and 16VDC. To select a range, simply specify the range value (for example, 4
selects the 4VDC range). If you specify a value larger than one of the first four ranges,
the HP E1419 selects the next higher range (for example, 4.1 selects the 16VDC range).
Specifying a value larger than 16 causes an error -222 "Data out of range". Specifying 0
selects the lowest range (.0625VDC). Specifying AUTO selects auto range. The default
range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings
in mind when specifying a range setting. For instance, if your expected signal
voltage is to be approximately .1VDC and the amplifier SCP for that channel has
a gain of 8, you must set <range> no lower than 1VDC or an input out-of-range
condition will exist.

• If an A/D reading is greater than the <table_range> specified with
DIAG:CUSTOM:PIEC, an overrange condition will occur.

• If no custom table has been loaded for the channels specified with
SENS:FUNC:CUST, an error will be generated when an INIT command is given.

• When Accepted: Not while INITiated

• Related Commands: DIAG:CUST:…

• *RST Condition: all custom EU tables erased

Usage program must put table constants into array table_block

DIAG:CUST:LIN 1,table_block,(@116:123) send table to HP E1419 for chs 16-23

SENS:FUNC:CUST 1,(@116:123) link custom EU with chs 16-23

INITiate then TRIGger module

[SENSe]

272 HP E1419 Command Reference Chapter 6

[SENSe:]FUNCtion:CUSTom:REFerence

[SENSe:]FUNCtion:CUSTom:REFerence [<range>,](@<ch_list>) links channels
with the custom Engineering Unit Conversion table loaded with the
DIAG:CUST:PIECE command. Measurements from a channel linked with
SENS:FUNC:CUST:REF will result in a temperature that is sent to the Reference
Temperature Register. This command is used to measure the temperature of an
isothermal reference panel using custom characterized RTDs or thermistors. Contact
your Hewlett-Packard System Engineer for more information on Custom
Engineering Unit Conversion for your application.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

range numeric (float32) see comments VDC

ch_list channel list (string) 100 - 163 none

Comments • See "Linking Input Channels to EU Conversion" on page 3-59 for more
information.

• The <range> parameter: The HP E1419 has five ranges: .0625VDC, .25VDC,
1VDC, 4VDC, and 16VDC. To select a range, simply specify the range value (for
example, 4 selects the 4VDC range). If you specify a value larger than one of the
first four ranges, the HP E1419 selects the next higher range (for example, 4.1
selects the 16VDC range). Specifying a value larger than 16 generates an error.
Specifying 0 selects the lowest range (.0625VDC). Specifying AUTO selects auto
range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings
in mind when specifying a range setting. For instance, if your expected signal
voltage is to be approximately .1VDC and the amplifier SCP for that channel has
a gain of 8, you must set <range> no lower than 1VDC or an input out-of-range
condition will exist.

• The *CAL? command calibrates temperature channels based on Sense Amplifier
SCP setup at the time of execution. If SCP settings are changed, those channels
are no longer calibrated. *CAL? must be executed again.

• Related Commands: DIAG:CUST:PIEC, SENS:FUNC:TEMP,
SENS:FUNC:CUST:TC, *CAL?

• *RST Condition: all custom EU tables erased

Usage program must put table constants into array table_block

DIAG:CUST:PIEC 1,table_block,(@108) send characterized reference transducer
table for use by channel 8

SENS:FUNC:CUST:REF .25,(@108) link custom ref temp EU with ch 8

[SENSe]

Chapter 6 HP E1419 Command Reference 273

include this channel in a scan list with thermocouple channels (REF channel first)

INITiate then TRIGger module

[SENSe:]FUNCtion:CUSTom:TCouple

[SENSe:]FUNCtion:CUSTom:TCouple <type>,[<range>,](@<ch_list>) links
channels with the custom Engineering Unit Conversion table loaded with the
DIAG:CUST:PIECE command. The table is assumed to be for a thermocouple and
the <type> parameter will specify the built-in compensation voltage table to be used
for reference junction temperature compensation. SENS:FUNC:CUST:TC allows
you to use an EU table that is custom matched to thermocouple wire you have
characterized. Contact your Hewlett-Packard System Engineer for more information
on Custom Engineering Unit Conversion for your application.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

type discrete (string) E | EEXT | J | K | N | R | S | T none

range numeric (float32) see comments VDC

ch_list channel list (string) 100 - 163 none

Comments • See "Linking Input Channels to EU Conversion" on page 3-59 for more
information.

• The <range> parameter: The HP E1419 has five ranges: .0625VDC, .25VDC,
1VDC, 4VDC, and 16VDC. To select a range, simply specify the range value (for
example, 4 selects the 4VDC range). If you specify a value larger than one of the
first four ranges, the HP E1419 selects the next higher range (for example, 4.1
selects the 16VDC range). Specifying a value larger than 16 generates an error.
Specifying 0 selects the lowest range (.0625VDC). Specifying AUTO selects auto
range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings
in mind when specifying a range setting. For instance, if your expected signal
voltage is to be approximately .1VDC and the amplifier SCP for that channel has
a gain of 8, you must set <range> no lower than 1VDC or an input out-of-range
condition will exist.

• The sub_type EEXTended applies to E type thermocouples at 800°C and above.

• The *CAL? command calibrates temperature channels based on Sense Amplifier
SCP setup at the time of execution. If SCP settings are changed, those channels
are no longer calibrated. *CAL? must be executed again.

• Related Commands: DIAG:CUST:PIEC, *CAL?,SENS:REF, and
SENS:REF:TEMP

[SENSe]

274 HP E1419 Command Reference Chapter 6

• *RST Condition: all custom EU tables erased

Usage program must put table constants into array table_block

DIAG:CUST:PIEC 1,table_block,(@100:107)send characterized thermocouple table for
use by channels 0-7

SENS:FUNC:CUST:TC N,.25,(@100:107) link custom thermocouple EU with chs 0-7,
use reference temperature compensation for
N type wire.

SENSE:REF RTD,92,(@120) designate a channel to measure the
reference junction temperature

include these channels in a scan list (REF channel first)

INITiate then TRIGger module

[SENSe:]FUNCtion:FREQuency

[SENSe:]FUNCtion:FREQuency <ch_list> sets the SENSe function to frequency
for channels in <ch_list>. Also configures the channels specified as digital inputs.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ch_list string 132 - 163 none

Comments • If the channels specified are on an SCP that doesn’t support this function, an error
will be generated. See your SCP’s User’s Manual for its capabilities.

• Use the SENSe:FREQuency:APERture command to set the gate time for the
frequency measurement.

• Related commands: SENS:FREQ:APER

• *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital SCP
channels

Usage SENS:FUNC:FREQ (@144) set channel 44’s sense function to frequency

[SENSe:]FUNCtion:RESistance

[SENSe:]FUNCtion:RESistance <excite_current>,[<range>,](@<ch_list>) links
the EU conversion type for resistance and range with the channels specified by
ch_list.

[SENSe]

Chapter 6 HP E1419 Command Reference 275

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

excite_current discrete(string) 30E-6 | 488E-6 | MIN | MAX Amps

range numeric (float32) see first comment VDC

ch_list channel list (string) 100 - 163 none

Comments • The <range> parameter: The HP E1419 has five ranges: .0625VDC, .25VDC,
1VDC, 4VDC, and 16VDC. To select a range, simply specify the range value (for
example, 4 selects the 4VDC range). If you specify a value larger than one of the
first four ranges, the HP E1419 selects the next higher range (for example, 4.1
selects the 16VDC range). Specifying a value larger than 16 causes an error.
Specifying 0 selects the lowest range (.0625VDC). Specifying AUTO selects auto
range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings
in mind when specifying a range setting. For instance, if your expected signal
voltage is to be approximately .1VDC and the amplifier SCP for that channel has
a gain of 8, you must set <range> no lower than 1VDC or an input out-of-range
condition will exist.

• Resistance measurements require the use of Current Source Signal Conditioning
Plug-Ons.

• The excite_current parameter (excitation current) does not control the current
applied to the channel to be measured. The excite_current parameter only passes
the setting of the SCP supplying current to channel to be measured. The current
must have already been set using the OUTPUT:CURRENT:AMPL command.
The choices for excite_current are 30E-6 (or MIN) and 488E-6 (or MAX).
excite_current may be specified in milliamps (ma) and microamps (ua).

• The *CAL? command calibrates resistance channels based on Current Source
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings are
changed, those channels are no longer calibrated. *CAL? must be executed again.

• See "Linking Input Channels to EU Conversion" on page 3-59 for more
information.

• When Accepted: Not while INITiated

• Related Commands: OUTP:CURR, *CAL?

• *RST Condition: SENSE:FUNC:VOLT (@100:163)

Usage FUNC:RES 30ua,(@100,105,107) Set channels 0, 5, and 7 to convert voltage
to resistance assuming current source set to
30 µA use auto-range (default)

[SENSe]

276 HP E1419 Command Reference Chapter 6

[SENSe:]FUNCtion:STRain
:FBENding
:FBPoisson
:FPOisson
:HBENding
:HPOisson
[:QUARter]

Note on Syntax: Although the strain function is comprised of six separate SCPI
commands, the only difference between them is the bridge type they specify to the
strain EU conversion algorithm.

• [SENSe:]FUNCtion:STRain:<bridge_type> [<range>,](@<ch_list>) links the
strain EU conversion with the channels specified by ch_list to measure the bridge
voltage. See "Linking Input Channels to EU Conversion" on page 3-59 for more
information.

bridge_type is not a parameter but is part of the command syntax. The following
table relates the command syntax to bridge type. See the user’s manual for the
optional Strain SCP for bridge schematics and field wiring information.

Command Bridge Type

:FBENding Full Bending Bridge

:FBPoisson Full Bending Poisson Bridge

:FPOisson Full Poisson Bridge

:HBENding Half Bending Bridge

:HPOisson Half Poisson Bridge

[:QUARter] Quarter Bridge (default)

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

range numeric (flt32) see comments VDC

ch_list channel list (string) 1320 - 163 none

Comments • Strain measurements require the use of Bridge Completion Signal Conditioning
Plug-Ons.

• Bridge Completion SCPs provide the strain measurement bridges and their
excitation voltage sources. ch_list specifies the voltage sensing channels that are
to measure the bridge outputs. Measuring channels on a Bridge Completion SCP
only returns that SCP’s excitation source voltage.

[SENSe]

Chapter 6 HP E1419 Command Reference 277

• The <range> parameter: The HP E1419 has five ranges: .0625VDC, .25VDC,
1VDC, 4VDC, and 16VDC. To select a range, simply specify the range value (for
example, 4 selects the 4VDC range). If you specify a value larger than one of the
first four ranges, the HP E1419 selects the next higher range (for example, 4.1
selects the 16VDC range). Specifying a value larger than 16 generates an error.
Specifying 0 selects the lowest range (.0625VDC). Specifying AUTO selects auto
range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings
in mind when specifying a range setting. For instance, if your expected signal
voltage is to be approximately .1VDC and the amplifier SCP for that channel has
a gain of 8, you must set <range> no lower than 1VDC or an input out-of-range
condition will exist.

• The channel calibration command (*CAL?) calibrates the excitation voltage
source on each Bridge Completion SCP.

• When Accepted: Not while INITiated

• Related Commands: *CAL?, [SENSE:]STRAIN…

• *RST Condition: SENSE:FUNC:VOLT 0,(@100:163)

Usage FUNC:STRAIN 1,(@100:,105,107) quarter bridge sensed at channels 0, 5, and 7

[SENSe:]FUNCtion:TEMPerature

[SENSe:]FUNCtion:TEMPerature <type>,<sub_type>,[<range>,](@<ch_list>)
links channels to an EU conversion for temperature based on the sensor specified in
type and sub_type. Not for sensing thermocouple reference temperature (for
that, use the SENS:REF <type>,<sub_type>,(@<channel>) command).

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

type discrete (string) RTD | THERmistor | TCouple none

sub_type numeric (float32)
numeric (float32)
discrete (string)

for RTD use 85 | 92
for THER use 2250 | 5000 | 10000
for TC use CUSTom | E | EEXT |
 J | K | N | R | S | T

none
Ohms
none

range numeric (float32) see comments VDC

ch_list channel list (string) 100 - 163 none

Comments • Resistance temperature measurements (RTDs and THERmistors) require the use
of Current Source Signal Conditioning Plug-Ons. The following table shows the

[SENSe]

278 HP E1419 Command Reference Chapter 6

Current Source setting that must be used for the following RTDs and Thermistors:

Required Current
Amplitude

Temperature Sensor Types and
Subtypes

MAX (488µA)
MIN (30µA)

for RTD and THER,2250
for THER,5000 and THER,10000

• The <range> parameter: The HP E1419 has five ranges: .0625VDC, .25VDC,
1VDC, 4VDC, and 16VDC. To select a range, simply specify the range value (for
example, 4 selects the 4VDC range). If you specify a value larger than one of the
first four ranges, the HP E1419 selects the next higher range (for example, 4.1
selects the 16VDC range). Specifying a value larger than 16 generates an error.
Specifying 0 selects the lowest range (.0625VDC). Specifying AUTO selects auto
range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings
in mind when specifying a range setting. For instance, if your expected signal
voltage is to be approximately .1VDC and the amplifier SCP for that channel has
a gain of 8, you must set <range> no lower than 1VDC or an input out-of-range
condition will exist.

• The sub_type parameter: values of 85 and 92 differentiate between 100 Ohm (@
0°C) RTDs with temperature coefficients of 0.00385 and and 0.00392
Ohm/Ohm/°C respectively. The sub_type values of 2250, 5000, and 10000 refer to
thermistors that match the Omega 44000 series temperature response curve. These
44000 series thermistors are selected to match the curve within 0.1 or 0.2°C. For
thermistors sub_type may be specified in Kohms (kohm).

The sub_type EEXTended applies to E type thermocouples at 800°C and above.

CUSTom is pre-defined as Type K, with no reference junction compensation
(reference junction assumed to be at 0 °C).

• The *CAL? command calibrates temperature channels based on Current Source
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings are
changed, those channels are no longer calibrated. *CAL? must be executed again.

• See "Linking Input Channels to EU Conversion" on page 3-59 for more
information.

• When Accepted: Not while INITiated

• Related Commands: *CAL?, OUTP:CURR (for RTDs and Thermistors),
SENS:REF, and SENS:REF:TEMP (for Thermocouples)

• *RST Condition: SENSE:FUNC:VOLT AUTO,(@100:163)

[SENSe]

Chapter 6 HP E1419 Command Reference 279

Usage
Link two channels to the K type thermocouple temperature conversion

SENS:FUNC:TEMP TCOUPLE,K,(@101,102)

Link channel 0 to measure reference temperature using 5K thermistor

SENS:REF THER,5000,(@100)

[SENSe:]FUNCtion:TOTalize

[SENSe:]FUNCtion:TOTalize <ch_list> sets the SENSe function to TOTalize for
channels in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ch_list string 132 - 163 none

Comments • The totalize function counts rising edges of digital transitions at
Frequency/Totalize SCP channels. The counter is 24 bits wide and can count up to
16,777,215.

• The SENS:TOT:RESET:MODE command controls which events will reset the
counter.

• If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

• Related Commands: SENS:TOT:RESET:MODE, INPUT:POLARITY

• *RST Condition: SENS:FUNC:COND and INP:POL NORM for all digital SCP
channels.

Usage SENS:FUNC:TOT (@148) channel 48 is a totalizer

[SENSe:]FUNCtion:VOLTage[:DC]

[SENSe:]FUNCtion:VOLTage[:DC] [<range>,](@<ch_list>) links the specified
channels to return DC voltage.

[SENSe]

280 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

range numeric (float32) see comments VDC

ch_list channel list (string) 100 - 163 none

Comments • The <range> parameter: The HP E1419 has five ranges: .0625VDC, .25VDC,
1VDC, 4VDC, and 16VDC. To select a range, simply specify the range value (for
example, 4 selects the 4VDC range). If you specify a value larger than one of the
first four ranges, the HP E1419 selects the next higher range (for example, 4.1
selects the 16VDC range). Specifying a value larger than 16 causes an error.
Specifying 0 selects the lowest range (.0625VDC). Specifying AUTO selects auto
range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings
in mind when specifying a range setting. For instance, if your expected signal
voltage is to be approximately .1VDC and the amplifier SCP for that channel has
a gain of 8, you must set <range> no lower than 1VDC or an input out-of-range
condition will exist.

• The *CAL? command calibrates channels based on Sense Amplifier SCP setup at
the time of execution. If SCP settings are changed, those channels are no longer
calibrated. *CAL? must be executed again.

• See "Linking Input Channels to EU Conversion" on page 3-59 for more
information.

• When Accepted: Not while INITiated

• Related Commands: *CAL?, INPUT:GAIN…

• *RST Condition: SENSE:FUNC:VOLT AUTO,(@100:163)

Usage FUNC:VOLT (@140:163) Channels 40 - 63 measure voltage in
auto-range (defaulted)

[SENSe:]REFerence

[SENSe:]REFerence <type>,<sub_type>,[<range>,](@<ch_list>) links channel in
<ch_list> to the reference junction temperature EU conversion based on type and
sub_type. When scanned, the resultant value is stored in the Reference Temperature
Register, and by default the FIFO and CVT. This is a resistance temperature
measurement and uses the on-board 122 µA current source.

NOTE The reference junction temperature value generated by scanning the reference
channel is stored in the Reference Temperature Register. This reference temperature

[SENSe]

Chapter 6 HP E1419 Command Reference 281

is used to compensate all subsequent thermocouple measurements until the register
is overwritten by another reference measurement or by specifying a constant
reference temperature with the SENSE:REF:TEMP command. If used, the reference
junction channel must be scanned before any thermocouple channels. Use the
SENSE:REF:CHANNELS command to place the reference measuring channel into
the scan list ahead of the thermocouple measuring channels.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

type discrete (string) THERmistor | RTD | CUSTom none

sub_type numeric (float32)
numeric (float32)

for THER use 5000
for RTD use 85 | 92
for CUSTom use 1

Ohm
none
none

range numeric (float32) see comments VDC

ch_list channel list (string) 100 - 163 none

Comments • See "Linking Input Channels to EU Conversion" on page 3-59 for more
information.

• The <range> parameter: The HP E1419 has five ranges: .0625VDC, .25VDC,
1VDC, 4VDC, and 16VDC. To select a range, simply specify the range value (for
example, 4 selects the 4VDC range). If you specify a value larger than one of the
first four ranges, the HP E1419 selects the next higher range (for example, 4.1
selects the 16VDC range). Specifying a value larger than 16 causes an error.
Specifying 0 selects the lowest range (.0625VDC). Specifying AUTO selects auto
range. The default range (no range parameter specified) is auto range.

• If you are using amplifier SCPs, you should set them first and keep their settings
in mind when specifying a range setting. For instance, if your expected signal
voltage is to be approximately .1VDC and the amplifier SCP for that channel has
a gain of 8, you must set <range> no lower than 1VDC or an input out-of-range
condition will exist.

• The <type> parameter specifies the sensor type that will be used to determine the
temperature of the isothermal reference panel. <type> CUSTom is pre-defined as
Type E with 0°C reference junction temp and is not re-defineable.

• For <type> THERmistor, the <sub_type> parameter may be specified in ohms or
kohm.

• The *CAL? command calibrates resistance channels based on Current Source
SCP and Sense Amplifier SCP setup at the time of execution. If SCP settings are
changed, those channels are no longer calibrated. *CAL? must be executed again.

[SENSe]

282 HP E1419 Command Reference Chapter 6

• Related Commands: SENSE:FUNC:TEMP

• *RST Condition: Reference temperature is 0 °C

Usage
sense the reference temperature on channel 20 using an RTD

SENSE:REF RTD,92,(@120)

[SENSe:]REFerence:CHANnels

[SENSe:]REFerence:CHANnels (@<ref_channel>),(@<ch_list>) causes channel
specified by <ref_channel> to appear in the scan list just before the channel(s)
specified by <ch_list>. This command is used to include the thermocouple reference
temperature channel in the scan list before other thermocouple channels are
measured.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ref_channel channel list (string) 100 - 163 none

ch_list channel list (string) 100 - 163 none

Comments • Use SENS:FUNC:TEMP to configure channels to measure thermocouples. Then
use SENS:REF to configure one or more channels to measure an isothermal
reference temperature. Now use SENS:REF:CHAN to group the reference
channel with its thermocouple measurement channels in the scan list.

• If thermocouple measurements are made through more than one isothermal
reference panel, you will set up a reference channel for each. Execute the
SENS:REF:CHAN command for each reference/measurement channel group.

• Related commands: SENS:FUNC:TEMP, SENS:REF

• *RST Condition: Scan List contains no channel references.

Usage SENS:FUNC:TEMP TC,E,.0625,(@108:115) E type TCs on channels 8 through 15

SENS:REF THER,5000,1,(@106) Reference ch is thermistor at channel 6

SENS:REF RTD,85,.25,(@107) Reference ch is RTD at channel 7

SENS:REF:CHAN (@106),(@108:111) Thermistor measured before chs 8 - 11

SENS:REF:CHAN (@107),(@112:115) RTD measured before chs 12 - 15

[SENSe]

Chapter 6 HP E1419 Command Reference 283

[SENSe:]REFerence:TEMPerature

[SENSe:]REFerence:TEMPerature <degrees_c> stores a fixed reference junction
temperature in the Reference Temperature Register. Use when the thermocouple
reference junction is kept at a controlled temperature.

NOTE This reference temperature is used to compensate all subsequent thermocouple
measurements until the register is overwritten by another SENSE:REF:TEMP value
or by scanning a channel linked with the SENSE:REFERENCE command. If used,
SENS:REF:TEMP must be executed before scanning any thermocouple channels.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

degrees_c numeric (float32) -126 to +126 none

Comments • This command is used to specify to the HP E1419 the temperature of a controlled
temperature thermocouple reference junction.

• When Accepted: Not while INITiated

• Related Commands: FUNC:TEMP TC…

• *RST Condition: Reference temperature is 0 °C

Usage SENSE:REF:TEMP 40 subsequent thermocouple conversion will
assume compensation junction at
40 degrees C

[SENSe:]STRain:EXCitation

[SENSe:]STRain:EXCitation <excite_v>,(@<ch_list>) specifies the excitation
voltage value to be used to convert strain bridge readings for the channels specified
by <ch_list>. This command does not control the output voltage of any source.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

excite_v numeric (flt32) .01 - 99 volts

ch_list channel list (string) 100 - 163 none

Comments • <ch_list> must specify the channel used to sense the bridge voltage, not the
channel position on a Bridge Completion SCP.

[SENSe]

284 HP E1419 Command Reference Chapter 6

• Related Commands: SENSE:STRAIN:…, SENSE:FUNC:STRAIN…

• *RST Condition: 3.9V

Usage STRAIN:EXC 4,(@100:107) set excitation voltage for channels 0
through 7

[SENSe:]STRain:EXCitation?

[SENSe:]STRain:EXCitation? (@<channel>) returns the excitation voltage value
currently set for the sense channel specified by <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • Returned Value: Numeric value of excitation voltage. The C-SCPI type is flt32.

• <channel> must specify a single channel only.

• Related Commands: STRAIN:EXCitation

Usage STRAIN:EXC? (@107) query excitation voltage for channel 7

enter statement here returns the excitation voltage set by
STR:EXC

[SENSe:]STRain:GFACtor

[SENSe:]STRain:GFACtor <gage_factor>,(@<ch_list>) specifies the gage factor to
be used to convert strain bridge readings for the channels specified by <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

gage_factor numeric (flt32) 1 - 5 none

ch_list channel list (string) 100 - 163 none

Comments • <ch_list> must specify the channel used to sense the bridge voltage, not the
channel position on a Bridge Completion SCP.

• Related Commands: SENSE:STRAIN:GFAC?, SENSE:FUNC:STRAIN…

• *RST Condition: Gage factor is 2

[SENSe]

Chapter 6 HP E1419 Command Reference 285

Usage STRAIN:GFAC 3,(@100:107) set gage factor for channels 0 through 7

[SENSe:]STRain:GFACtor?

[SENSe:]STRain:GFACtor? (@<channel>) returns the gage factor currently set for
the sense channel specified by <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • Returned Value: Numeric value of gage factor. The C-SCPI type is flt32.

• <channel> must specify a single channel only.

• Related Commands: STRAIN:GFACTOR

Usage STRAIN:GFAC? (@107) query gage factor for channel 7

enter statement here returns the gage factor set by STR:GFAC

[SENSe:]STRain:POISson

[SENSe:]STRain:POISson <poisson_ratio>,(@<ch_list>) sets the Poisson ratio to
be used for EU conversion of values measured on sense channels specified by
<ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

poisson_ratio numeric (flt32) .1 - .5 none

ch_list channel list (string) 100 - 163 none

Comments • <ch_list> must specify channels used to sense strain bridge output, not channel
positions on a Bridge Completion SCP.

• Related Commands: FUNC:STRAIN…, STRAIN:POISson?

• *RST Condition: Poisson ratio is .3

Usage STRAIN:POISSON .5,(@124:131) set Poisson ratio for sense channels 24
through 31

[SENSe]

286 HP E1419 Command Reference Chapter 6

[SENSe:]STRain:POISson?

[SENSe:]STRain:POISson? (@<channel>) returns the Poisson ratio currently set
for the sense channel specified by <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • Returned Value: numeric value of the Poisson ratio. C-SCPI type is flt32.

• <channel> must specify a single channel only.

• Related Commands: FUNC:STRAIN…, STRAIN:POISSON

Usage STRAIN:POISSON? (@131) query for the Poisson ratio specified for
sense channel 31

enter statement here enter the Poisson ratio value

[SENSe:]STRain:UNSTrained

[SENSe:]STRain:UNSTrained <unstrained_v>,(@<ch_list>) specifies the
unstrained voltage value to be used to convert strain bridge readings for the channels
specified by <ch_list>. This command does not control the output voltage of any
source.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

unstrained_v numeric (flt32) -16 through +16 volts

ch_list channel list (string) 100 - 163 none

Comments • Use a voltage measurement of the unstrained bridge sense channel to determine
the correct value for unstrained_v.

• <ch_list> must specify the channel used to sense the bridge voltage, not the
channel position on a Bridge Completion SCP.

• Related Commands: SENSE:STRAIN:UNST?, SENSE:FUNC:STRAIN…

• *RST Condition: Unstrained voltage is zero

Usage STRAIN:UNST .024,(@100) set unstrained voltage for channel 0

[SENSe]

Chapter 6 HP E1419 Command Reference 287

[SENSe:]STRain:UNSTrained?

[SENSe:]STRain:UNSTrained? (@<channel>) returns the unstrained voltage value
currently set for the sense channel specified by <channel>. This command does not
make a measurement.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • Returned Value: Numeric value of unstrained voltage. The C-SCPI type is flt32.

• <channel> must specify a single channel only.

• Related Commands: STRAIN:UNST

Usage STRAIN:UNST? (@107) query unstrained voltage for channel 7

enter statement here returns the unstrained voltage set by
STR:UNST

[SENSe:]TOTalize:RESet:MODE

[SENSe:]TOTalize:RESet:MODE <select>,<ch_list> sets the mode for resetting
totalizer channels in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

select discrete (string) INIT | TRIGger seconds

ch_list string 132 - 163 none

Comments • In the INIT mode the total is reset only when the INITiate command is executed.
In the TRIGger mode the total is reset every time a new scan is triggered.

• If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

• Related Commands: SENS:FUNC:TOT, INPUT:POLARITY

• *RST Condition: SENS:TOT:RESET:MODE INIT

Usage SENS:TOT:RESET:MODE TRIG,(@148) totalizer at channel 48 resets at each trigger
event

[SENSe]

288 HP E1419 Command Reference Chapter 6

[SENSe:]TOTalize:RESet:MODE?

[SENSe:]TOTalize:RESet:MODE? <channel> returns the reset mode for the
totalizer channel in <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • Channel must specify a single channel.

• If the channel specified is not on a frequency/totalize SCP, an error will be
generated.

• Returned Value: returns INIT or TRIG. The type is string.

[SENSe]

Chapter 6 HP E1419 Command Reference 289

SOURce

The SOURce command subsystem allows configuring output SCPs as well as
linking channels to output functions.

Subsystem Syntax SOURce
:FM

:STATe 1 | 0 | ON | OFF,(@<ch_list>)
:STATe? (@<channel>)

:FUNCtion
[:SHAPe]

:CONDition (@<ch_list>)
:PULSe (@<ch_list>)
:SQUare (@<ch_list>)

:PULM
:STATe 1 | 0 | ON | OFF,(@<ch_list>)
:STATe? (@<channel>)

:PULSe
:PERiod <period>,(@<ch_list>)
:PERiod? (@<channel>)
:WIDTh <pulse_width>,(@<ch_list>)
:WIDTh? (@<channel>)

SOURce:FM[:STATe]

SOURce:FM[:STATe] <enable>,(@<ch_list>) enables the Frequency Modulated
mode for a PULSe channel.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list string 132 - 163 none

Comments • This command is coupled with the SOURce:PULM:STATE command. If the FM
state is ON then the PULM state is OFF. If the PULM state is ON then the FM
state is OFF. If both the FM and the PULM states are OFF then the PULSe
channel is in the single pulse mode.

• If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

• Use SOURce:FUNCtion[:SHAPe]:SQUare to set FM pulse train to 50% duty
cycle. Use SOURce:PULSe:PERiod to set the period

290 HP E1419 Command Reference Chapter 6

• *RST Condition: SOUR:FM:STATE OFF, SOUR:PULM:STATE OFF,
SENS:FUNC:COND and INP:POL for all digital SCP channels

• Related Commands: SOUR:PULM[:STATe], SOUR:PULS:POLarity,
SOUR:PULS:PERiod, SOUR:FUNC[:SHAPe]:SQUare

• The variable frequency control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this channel,
the value assigned will be the frequency setting. For example:

O148 = 2000 /* set channel 48 to 2KHz */

SOURce:FM:STATe?

SOURce:FM:STATe? (@<channel>) returns the frequency modulated mode state
for a PULSe channel.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • Channel must specify a single channel.

• If the channel specified is not on a Frequency/Totalize SCP, an error will be
generated.

• Returned Value: returns 1 (ON) or 0 (OFF). The type is uint16.

SOURce:FUNCtion[:SHAPe]:CONDition

SOURce:FUNCtion[:SHAPe]:CONDition (@<ch_list>) sets the SOURce function
to output digital patterns to bits in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ch_list string 132 - 163 none

Comments • The HP E1533 SCP sources 8 digital bits on the channel specified by this
command. The HP E1534 SCP can source 1 digital bit on each of the the channels
specified by this command.

SOURce

Chapter 6 HP E1419 Command Reference 291

SOURce:FUNCtion[:SHAPe]:PULSe

SOURce:FUNCtion[:SHAPe]:PULSe (@<ch_list>) sets the SOURce function to
PULSe for the channels in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ch_list string 132 - 163 none

Comments • This PULSe channel function is further defined by the SOURce:FM:STATe and
SOURce:PULM:STATe commands. If the FM state is enabled then the frequency
modulated mode is active. If the PULM state is enabled then the pulse width
modulated mode is active. If both the FM and the PULM states are disabled then
the PULSe channel is in the single pulse mode.

SOURce:FUNCtion[:SHAPe]:SQUare

SOURce:FUNCtion[:SHAPe]:SQUare (@<ch_list>) sets the SOURce function to
output a square wave (50% duty cycle) on the channels in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

ch_list string 132 - 163 none

Comments • The frequency control for these channels is provided by the algorithm language
function:.

O149 = 2000 /* set channel 49 to 2KHz */

SOURce:PULM[:STATe]

SOURce:PULM[:STATe] <enable>,(@<ch_list>) enable the pulse width
modulated mode for the PULSe channels in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable boolean (uint16) 1 | 0 | ON | OFF none

ch_list string 132 - 163 none

Comments • This command is coupled with the SOURce:FM command. If the FM state is
enabled then the PULM state is disabled. If the PULM state is enabled then the
FM state is disabled. If both the FM and the PULM states are disabled then the
PULSe channel is in the single pulse mode.

SOURce

292 HP E1419 Command Reference Chapter 6

• If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

• *RST Condition: SOUR:PULM:STATE OFF

SOURce:PULM:STATe?

SOURce:PULM[:STATe]? (@<channel>) returns the pulse width modulated mode
state for the PULSe channel in <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments Channel must specify a single channel.

• Returned Value: returns ON or OFF. The type is string.

SOURce:PULSe:PERiod

SOURce:PULSe:PERiod <period>,(@<ch_list>) sets the fixed pulse period value
on a pulse width modulated pulse channel. This sets the frequency (1/period) of the
pulse-width-modulated pulse train.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

period numeric (float32) 25E-6 to 7.8125E-3
(resolution 0.238µsec)

seconds

ch_list string 132 - 163 none

Comments • If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

• *RST Condition: SOUR:FM:STATE OFF and SOUR:PULM:STATE OFF

• Related Commands: SOUR:PULM:STATE, SOUR:PULS:POLarity

• The variable pulse-width control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this channel,
the value assigned will be the pulse-width setting. For example:

O150 = .0025 /* set channel 50 pulse-width to 2.5 msec */

Usage SOUR:PULS:PER .005,(@148) set PWM pulse train to 200 Hz on chn 48

SOURce

Chapter 6 HP E1419 Command Reference 293

SOURce:PULSe:PERiod?

SOURce:PULSe:PERiod? (@<channel>) returns the fixed pulse period value on
the pulse width modulated pulse channel in <channel>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

• Returned Value: numeric period. The type is float32.

SOURce:PULSe:WIDTh

SOURce:PULSe:WIDTh <pulse_width>,(@<ch_list>) sets the fixed pulse width
value on the frequency modulated pulse channels in <ch_list>.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

pulse_width numeric (float32) 7.87E-6 to 7.8125E-3
(238.4E-9 resolution)

seconds

ch_list string 132 - 163 none

Comments • If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

• *RST Condition: SOUR:FM:STATE OFF and SOUR:PULM:STATE OFF

• Related Commands: SOUR:PULM:STATE, SOUR:PULS:POLarity

• The variable frequency control for this channel is provided by the algorithm
language. When the algorithm executes an assignment statement to this channel,
the value assigned will be the frequency setting. For example:

O149 = 2000 /* set channel 49 to 2KHz */

Usage SOUR:PULS:WIDTH 2.50E-3,(@149) set fixed pulse width of 2.5 msec on
channel 49

SOURce:PULSe:WIDTh?

SOURce:PULSe:WIDTh? (@<ch_list>) returns the fixed pulse width value on a
frequency modulated pulse channel.

SOURce

294 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel string 132 - 163 none

Comments • Channel must specify a single channel.

• If the channels specified are not on a Frequency/Totalize SCP, an error will be
generated.

• Returned Value: returns the numeric pulse width. The type is float32.

SOURce

Chapter 6 HP E1419 Command Reference 295

STATus

The STATus subsystem communicates with the SCPI defined Operation and
Questionable Data status register sets. Each is comprised of a Condition register, a
set of Positive and Negative Transition Filter registers, an Event register, and an
Enable register. Condition registers allow you to view the current real-time states of
their status signal inputs (signal states are not latched). The Positive and Negative
Transition Filter registers allow you to control the polarity of change from the
Condition registers that will set Event register bits. Event registers contain latched
representations of signal transition events from their Condition register. Querying an
Event register reads and then clears its contents, making it ready to record further
event transitions from its Condition register. Enable registers are used to select
which signals from an Event register will be logically ORed together to form a
summary bit in the Status Byte Summary register. Setting a bit to one in an Enable
register enables the corresponding bit from its Event register.

NOTE For a complete discussion and more detailed status illustration see "Using the Status
System" on page 3-90.

Figure 6-4 General Status Register Organization

296 HP E1419 Command Reference Chapter 6

Initializing the
Status System

The following table shows the effect of Power-on, *RST, *CLS and
STATus:PRESet on the status system register settings.

SCPI
Transition

Filters

SCPI
Enable

Registers

SCPI
Event

Registers

IEEE 488.2
Registers

ESE and SRE

IEEE 488.2
Registers

SESR and STB

Power-on preset preset clear clear clear

*RST none none none none none

*CLS none none clear none clear

STAT:PRESET preset preset none none none

Subsystem Syntax STATus
:OPERation

:CONDition?
:ENABle <enable_mask>
:ENABle?

 [:EVENt]?
:NTRansition <transition_mask>
:NTRansition?
:PTRansition <transition_mask>
:PTRansition?

:PRESet
:QUEStionable

:CONDition?
:ENABle <enable_mask>
:ENABle?

 [:EVENt]?
:NTRansition <transition_mask>
:NTRansition?
:PTRansition <transition_mask>
:PTRansition?

The Status system contains four status groups

• Operation Status Group
• Questionable Data Group
• Standard Event Group
• Status Byte Group

This SCPI STATus subsystem communicates with the first two groups while
IEEE-488.2 Common Commands (documented later in this chapter) communicate
with Standard Event and Status Byte Groups.

STATus

Chapter 6 HP E1419 Command Reference 297

Weighted Bit
Values

Register queries are returned using decimal weighted bit values. Enable registers can
be set using decimal, hex, octal, or binary. The following table can be used to help
set Enable registers using decimal, and decode register queries.

Status System Decimal Weighted Bit Values

bit# 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

value always 0 16,384 8,192 4,096 2,048 1,024 512 256 128 64 32 16 8 4 2 1

The Operation Status Group

The Operation Status Group indicates the current operating state of the HP E1419.
The bit assignments are:

Bit # dec value hex value Bit Name Description

0 1 000116 Calibrating Set by CAL:TARE, and CAL:SETup. Cleared by
CAL:TARE?, and CAL:SETup?. Set while *CAL?
executes and reset when *CAL? completes. Set by
CAL:CONFIG:VOLT or CAL:CONFIG:RES,
cleared by CAL:VAL:VOLT or CAL:VAL:RES.

1-3 Not used

4 16 001016 Measuring Set when instrument INITiated. Cleared when
instrument returns to Trigger Idle State.

5-7 Not used

8 256 010016 Scan Complete Set when each pass through a Scan List completed
(may not indicate all measurements have been taken
when TRIG:COUNT >1).

9 512 020016 SCP Trigger An SCP has sourced a trigger event (future
HP 1419 SCPs)

10 1024 040016 FIFO Half Full The FIFO contains at least 32,768 readings

11 2048 080016 Algorithm Interrupted The interrupt() function was called in an algorithm

12-15 Not used

STATus:OPERation:CONDition?

STATus:OPERation:CONDition? returns the decimal weighted value of the bits set
in the Condition register.

Comments • The Condition register reflects the real-time state of the status signals. The signals
are not latched; therfore past events are not retained in this register (see
STAT:OPER:EVENT?).

STATus

298 HP E1419 Command Reference Chapter 6

• Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Related Commands: *CAL?, CAL:ZERO, INITiate[:IMMediate],
STAT:OPER:EVENT?, STAT:OPER:ENABLE, STAT:OPER:ENABLE?

• *RST Condition: No Change

Usage STATUS:OPERATION:CONDITION? Enter statement will return value from
condition register

STATus:OPERation:ENABle

STATus:OPERation:ENABle <enable_mask> sets bits in the Enable register that
will enable corresponding bits from the Event register to set the Operation summary
bit.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable_mask numeric (uint16) 0-32767 none

Comments • Enable_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• VXI Interrupts: When Operation Status Group bits 4, 8, 9, 10, or 11 are enabled,
VXI card interrupts will occur as follows:

When the event corresponding to bit 4 occurs and then is cleared, the card
will generate a VXI interrupt. When the event corresponding to bit 8, 9, 10,
or 11 occurs, the card will generate a VXI interrupt.

NOTE: In C-SCPI, the C-SCPI overlap mode must be on for VXIbus
interrupts to occur.

• Related Commands: *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:EVENT?, STAT:OPER:ENABLE?

• Cleared By: STAT:PRESet and power-on.

• *RST Condition: No change

Usage STAT:OPER:ENABLE 1 Set bit 0 in the Operation Enable register

STATus

Chapter 6 HP E1419 Command Reference 299

STATus:OPERation:ENABle?

STATus:OPERation:ENABle? returns the value of bits set in the Operation Enable
register.

Comments • Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Related Commands: *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:EVENT?, STAT:OPER:ENABLE

• *RST Condition: No change

Usage STAT:OPER:ENABLE? Enter statement returns current value of bits
set in the Operation Enable register

STATus:OPERation[:EVENt]?

STATus:OPERation[:EVENt]? returns the decimal weighted value of the bits set in
the Event register.

Comments • When using the Operation Event register to cause SRQ interrupts,
STAT:OPER:EVENT? must be executed after an SRQ to clear the event register
and re-enable future interrupts.

• Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Related Commands: *STB?, SPOLL, STAT:OPER:COND?,
STAT:OPER:ENABLE, STAT:OPER:ENABLE?

• Cleared By: *CLS, power-on, and by reading the register.

• *RST Condition: No change

Usage STAT:OPER:EVENT? Enter statement will return the value of bits
set in the Operation Event register

STAT:OPER? Same as above

STATus:OPERation:NTRansition

STATus:OPERation:NTRansition <transition_mask> sets bits in the Negative
Transition Filter (NTF) register. When a bit in the NTF register is set to one, the
corresponding bit in the Condition register must change from a one to a zero in order
to set the corresponding bit in the Event register. When a bit in the NTF register is
zero, a negative transition of the Condition register bit will not change the Event
register bit.

STATus

300 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

transition_mask numeric (uint16) 0-32767 none

Comments • transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• If both the STAT:OPER:PTR and STAT:OPER:NTR registers have a
corresponding bit set to one, any transition, positive or negative will set the
corresponding bit in the Event register.

• If neither the STAT:OPER:PTR or STAT:OPER:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have no
effect on the Event register.

• Related Commands: STAT:OPER:NTR?, STAT:OPER:PTR

• Cleared By: STAT:PRESet and power-on.

• *RST Condition: No change

Usage STAT:OPER:NTR 16 When "Measuring" bit goes false, set bit 4
in Status Operation Event register.

STATus:OPERation:NTRansition?

STATus:OPERation:NTRansition? returns the value of bits set in the Negative
Transition Filter (NTF) register.

Comments • Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Related Commands: STAT:OPER:NTR

• *RST Condition: No change

Usage STAT:OPER:NTR? Enter statement returns current value of bits
set in the NTF register

STATus:OPERation:PTRansition

STATus:OPERation:PTRansition <transition_mask> sets bits in the Positive
Transition Filter (PTF) register. When a bit in the PTF register is set to one, the
corresponding bit in the Condition register must change from a zero to a one in order
to set the corresponding bit in the Event register. When a bit in the PTF register is

STATus

Chapter 6 HP E1419 Command Reference 301

zero, a positive transition of the Condition register bit will not change the Event
register bit.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

transition_mask numeric (uint16) 0-32767 none

Comments • transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• If both the STAT:OPER:PTR and STAT:OPER:NTR registers have a
corresponding bit set to one, any transition, positive or negative will set the
corresponding bit in the Event register.

• If neither the STAT:OPER:PTR or STAT:OPER:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have no
effect on the Event register.

• Related Commands: STAT:OPER:PTR?, STAT:OPER:NTR

• Set to all ones by: STAT:PRESet and power-on.

• *RST Condition: No change

Usage STAT:OPER:PTR 16 When "Measuring" bit goes true, set bit 4 in
Status Operation Event register.

STATus:OPERation:PTRansition?

STATus:OPERation:PTRansition? returns the value of bits set in the Positive
Transition Filter (PTF) register.

Comments • Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Related Commands: STAT:OPER:PTR

• *RST Condition: No change

Usage STAT:OPER:PTR? Enter statement returns current value of bits
set in the PTF register

STATus:PRESet

STATus:PRESet sets the Operation Status Enable and Questionable Data Enable
registers to 0. After executing this command, none of the events in the Operation
Event or Questionable Event registers will be reported as a summary bit in either the

STATus

302 HP E1419 Command Reference Chapter 6

Status Byte Group or Standard Event Status Group. STATus:PRESet does not clear
either of the Event registers.

Comments • Related Commands: *STB?, SPOLL, STAT:OPER:ENABLE,
STAT:OPER:ENABLE?, STAT:QUES:ENABLE, STAT:QUES:ENABLE?

• *RST Condition: No change

Usage STAT:PRESET Clear both of the Enable registers

The Questionable Data Group

The Questionable Data Group indicates when errors are causing lost or questionable
data. The bit assignments are:

Bit # dec value hex value Bit Name Description

0-7 Not used

8 256 010016 Calibration Lost At *RST or Power-on Control Processor has found a
checksum error in the Calibration Constants. Read
error(s) with SYST:ERR? and re-calibrate area(s) that
lost constants.

9 512 020016 Trigger Too Fast Scan not complete when another trigger event
received.

10 1024 040016 FIFO Overflowed Attempt to store more than 65,024 readings in FIFO.

11 2048 080016 Over voltage
Detected on Input

If the input protection jumper has not been cut, the
input relays have been opened and *RST is required
to reset the module. Overvoltage will also generate
an error.

12 4096 100016 VME Memory
Overflow

The number of readings taken exceeds VME memory
space.

13 8192 200016 Setup Changed Channel Calibration in doubt because SCP setup may
have changed since last *CAL? or CAL:SETup
command. (*RST always sets this bit).

14-15 Not used

 STATus:QUEStionable:CONDition?

STATus:QUEStionable:CONDition? returns the decimal weighted value of the bits
set in the Condition register.

Comments • The Condition register reflects the real-time state of the status signals. The signals
are not latched; therfore past events are not retained in this register (see
STAT:QUES:EVENT?).

STATus

Chapter 6 HP E1419 Command Reference 303

• Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Related Commands: CAL:VALUE:RESISTANCE, CAL:VALUE:VOLTAGE,
STAT:QUES:EVENT?, STAT:QUES:ENABLE, STAT:QUES:ENABLE?

• *RST Condition: No change

Usage STATUS:QUESTIONABLE:CONDITION? Enter statement will return value from
condition register

STATus:QUEStionable:ENABle

STATus:QUEStionable:ENABle <enable_mask> sets bits in the Enable register
that will enable corresponding bits from the Event register to set the Questionable
summary bit.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

enable_mask numeric (uint16) 0-32767 none

Comments • Enable_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• VXI Interrupts: When bits 9, 10, or 11 are enabled and C-SCPI overlap mode is
on (or if you are using non-compiled SCPI), VXI card interrupts will be enabled.
When the event corresponding to bit 9, 10, or 11 occurs, the card will generate a
VXI interrupt.

• Related Commands: *STB?, SPOLL, STAT:QUES:COND?,
STAT:QUES:EVENT?, STAT:QUES:ENABLE?

• Cleared By: STAT:PRESet and power-on.

• *RST Condition: No change

Usage STAT:QUES:ENABLE 128 Set bit 7 in the Questionable Enable register

STATus:QUEStionable:ENABle?

STATus:QUEStionable:ENABle? returns the value of bits set in the Questionable
Enable register.

Comments • Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

STATus

304 HP E1419 Command Reference Chapter 6

• Related Commands: *STB?, SPOLL, STAT:QUES:COND?,
STAT:QUES:EVENT?, STAT:QUES:ENABLE

• *RST Condition: No change

Usage STAT:QUES:ENABLE? Enter statement returns current value of bits
set in the Questionable Enable register

STATus:QUEStionable[:EVENt]?

STATus:QUEStionable[:EVENt]? returns the decimal weighted value of the bits set
in the Event register.

Comments • When using the Questionable Event register to cause SRQ interrupts,
STAT:QUES:EVENT? must be executed after an SRQ to clear the register and
re-enable future interrupts.

• Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Cleared By: *CLS, power-on, and by reading the register.

• Related Commands: *STB?, SPOLL, STAT:QUES:COND?,
STAT:QUES:ENABLE, STAT:QUES:ENABLE?

Usage STAT:QUES:EVENT? Enter statement will return the value of bits
set in the Questionable Event register

STAT:QUES? Same as above

STATus:QUEStionable:NTRansition

STATus:QUEStionable:NTRansition <transition_mask> sets bits in the Negative
Transition Filter (NTF) register. When a bit in the NTF register is set to one, the
corresponding bit in the Condition register must change from a one to a zero in order
to set the corresponding bit in the Event register. When a bit in the NTF register is
zero, a negative transition of the Condition register bit will not change the Event
register bit.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

transition_mask numeric (uint16) 0-32767 none

Comments • transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

STATus

Chapter 6 HP E1419 Command Reference 305

• If both the STAT:QUES:PTR and STAT:QUES:NTR registers have a
corresponding bit set to one, any transition, positive or negative will set the
corresponding bit in the Event register.

• If neither the STAT:QUES:PTR or STAT:QUES:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have no
effect on the Event register.

• Related Commands: STAT:QUES:NTR?, STAT:QUES:PTR

• Cleared By: STAT:PRESet and power-on.

• *RST Condition: No change

Usage STAT:QUES:NTR 1024 When "FIFO Overflowed" bit goes false, set
bit 10 in Status Questionable Event register.

STATus:QUEStionable:NTRansition?

STATus:QUEStionable:NTRansition? returns the value of bits set in the Negative
Transition Filter (NTF) register.

Comments • Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Related Commands: STAT:QUES:NTR

• *RST Condition: No change

Usage STAT:QUES:NTR? Enter statement returns current value of bits
set in the NTF register

STATus:QUEStionable:PTRansition

STATus:QUEStionable:PTRansition <transition_mask> sets bits in the Positive
Transition Filter (PTF) register. When a bit in the PTF register is set to one, the
corresponding bit in the Condition register must change from a zero to a one in order
to set the corresponding bit in the Event register. When a bit in the PTF register is
zero, a positive transition of the Condition register bit will not change the Event
register bit.

STATus

306 HP E1419 Command Reference Chapter 6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

transition_mask numeric (uint16) 0-32767 none

Comments • transition_mask may be sent as decimal, hex (#H), octal (#Q), or binary (#B).

• If both the STAT:QUES:PTR and STAT:QUES:NTR registers have a
corresponding bit set to one, any transition, positive or negative will set the
corresponding bit in the Event register.

• If neither the STAT:QUES:PTR or STAT:QUES:NTR registers have a
corresponding bit set to one, transitions from the Condition register will have no
effect on the Event register.

• Related Commands: STAT:QUES:PTR?, STAT:QUES:NTR

• Set to all ones by: STAT:PRESet and power-on.

• *RST Condition: No change

Usage STAT:QUES:PTR 1024 When "FIFO Overflowed" bit goes true, set
bit 10 in Status Operation Event register.

STATus:QUEStionable:PTRansition?

STATus:QUEStionable:PTRansition? returns the value of bits set in the Positive
Transition Filter (PTF) register.

Comments • Returned Value: Decimal weighted sum of all set bits. The C-SCPI type is uint16.

• Related Commands: STAT:QUES:PTR

• *RST Condition: No change

Usage STAT:OPER:PTR? Enter statement returns current value of bits
set in the PTF register

STATus

Chapter 6 HP E1419 Command Reference 307

SYSTem

The SYSTem subsystem is used to query for error messages, types of Signal
Conditioning Plug-ons (SCPs), and the SCPI version currently implemented.

Subsystem Syntax SYSTem
:CTYPe? (@<channel>)
:ERRor?
:VERSion?

SYSTem:CTYPe?

SYSTem:CTYPe? (@<channel>) returns the identification of the Signal
Conditioning Plug-On installed at the specified channel.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

channel channel list (string) 100 - 163 none

Comments • channel must specify a single channel only.

• Returned Value: An example of the response string format is:
HEWLETT-PACKARD,E1419 Option <option number and description> SCP,0,0

The C-SCPI type is string. For specific response string, refer to the appropriate
SCP manual. If <channel> specifies a position where no SCP is installed, the
module returns the response string:
0,No SCP at this Address,0,0

Usage SYST:CTYPE? (@100) return SCP type install at channel 0

SYSTem:ERRor?

SYSTem:ERRor? returns the latest error entered into the Error Queue.

Comments • SYST:ERR? returns one error message from the Error Queue (returned error is
removed from queue). To return all errors in the queue, repeatedly execute
SYST:ERR? until the error message string = +0, "No error"

• Returned Value: Errors are returned in the form:
±<error number>, "<error message string>"

• RST Condition: Error Queue is empty.

308 HP E1419 Command Reference Chapter 6

Usage SYST:ERR? returns the next error message from the
Error Queue

SYSTem:VERSion?

SYSTem:VERSion? returns the version of SCPI this instrument complies with.

Comments • Returned Value: String "1990". The C-SCPI type is string.

Usage SYST:VER? Returns "1990"

SYSTem

Chapter 6 HP E1419 Command Reference 309

TRIGger

The TRIGger command subsystem controls the behavior of the trigger system once
it is initiated (see INITiate command subsystem).

Figure 6-5 shows the overall Trigger System model. The shaded area shows the
ARM subsystem portion.

CAUTION! • Algorithms execute at most once per trigger event. Should trigger events cease
(external trigger source stops) or are ignored (TRIGger:COUNt reached),
algorithms execution will stop. In this case control outputs are left at the last value
set by the algorithms. Depending on the process, this uncontrolled situation could
even be dangerous. Make certain that you have put your process into a safe state
before you halt (stop triggering) execution of a controlling algorithm.

• The HP E1535 Watchdog Timer SCP was specifically developed to automatically
signal that an algorithm has stopped controlling a process. Use of the Watchdog
Timer is recommended for critical processes.

Figure 6-5 Logical Trigger Model

310 HP E1419 Command Reference Chapter 6

Event Sequence Figure 6-6 shows how the module responds to various trigger/arm configurations.

Subsystem Syntax
TRIGger

:COUNt <trig_count>
 :COUNt?
 [:IMMediate]

:SOURce BUS | EXTernal | HOLD | SCP | IMMediate | TIMer | TTLTrg<n>
:SOURce?
:TIMer

[:PERiod] <trig_interval>
[:PERiod]?

Figure 6-6 Trigger/Scan Sequence Diagram

TRIGger

Chapter 6 HP E1419 Command Reference 311

TRIGger:COUNt

TRIGger:COUNt <trig_count> sets the number of times the module can be
triggered before it returns to the Trigger Idle State. The default count is 0 (same as
INF) so accepts continuous triggers. See Figure 6-6

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

Trig_count numeric (uint16)
(string)

0 to 65535 | INF none

Comments • When trig_count is set to 0 or INF, the trigger counter is disabled. Once INITiated
the module will return to the Waiting For Trigger State after each trigger event.
The ABORT (preferred) and *RST commands will return the module to the
Trigger Idle State. ABORT is preferred since *RST also returns other module
configurations to their default settings.

• The default count is 0

• Related Commands: TRIG:COUNT?

• *RST Condition: TRIG:COUNT 0

Usage TRIG:COUNT 10 Set the module to make 10 passes all
enabled algorithms.

TRIG:COUNT 0 Set the module to accept unlimited triggers
(the default)

TRIGger:COUNt?

TRIGger:COUNt? returns the currently set trigger count.

Comments • If TRIG:COUNT? returns 0, the trigger counter is disabled and the module will
accept an unlimited number of trigger events.

• Returned Value: Numeric 0 through 65,535. The C-SCPI type is int32.

• Related Commands: TRIG:COUNT

• *RST Condition: TRIG:COUNT? returns 0

Usage TRIG:COUNT? Query for trigger count setting

enter statement Returns the TRIG:COUNT setting

TRIGger

312 HP E1419 Command Reference Chapter 6

TRIGger[:IMMediate]

TRIGger[:IMMediate] causes one trigger when the module is set to the
TRIG:SOUR BUS or TRIG:SOUR HOLD mode.

Comments • This command is equivalent to the *TRG common command or the IEEE-488.2
"GET" bus command.

• Related Commands: TRIG:SOURCE

Usage TRIG:IMM Use TRIGGER to start a measurement scan

TRIGger:SOURce

TRIGger:SOURce <trig_source> configures the trigger system to respond to the
trigger event.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

trig_source discrete (string) BUS | EXT | HOLD | IMM | SCP |
TIM | TTLTrg<n>

none

Comments • The following table explains the possible choices.

Parameter Value Source of Trigger

BUS TRIGger[:IMMediate], *TRG, GET (for HP-IB)

EXTernal “TRG” signal on terminal module

HOLD TRIGger[:IMMediate]

IMMediate The trigger event is always satisfied.

SCP SCP Trigger Bus (future HP or SCP Breadboard)

TIMer The internal trigger timer

TTLTrg<n> The VXIbus TTLTRG lines (n=0 through 7)

NOTE The ARM system only exists while TRIG:SOUR is TIMer. When TRIG:SOUR is
not TIMer, SCPI compatibility requires that ARM:SOUR be IMM or an Error
-221,"Settings conflict" will be generated.

• While TRIG:SOUR is IMM, you need only INITiate the trigger system to start a
measurement scan.

TRIGger

Chapter 6 HP E1419 Command Reference 313

• While TRIG:SOUR IMM provides the fastest trigger repetition rate, the trigger
occurrence time is not deterministic. In addition, there is no means to synchronize
the start of algorithm execution with an external input since when TRIG:SOUR is
IMM, ARM:SOUR must also be set to IMM. The TRIG:SOUR TIMER provides
both a deterministic occurrence of algorithm executions, and the ability to
synchronize this with an external signal (ARM:SOUR EXT).

• When Accepted: Before INIT only.

• Related Commands: ABORt, INITiate, *TRG

• *RST Condition: TRIG:SOUR TIMER

Usage TRIG:SOUR EXT Hardware trigger input at Connector
Module

TRIGger:SOURce?

TRIGger:SOURce? returns the current trigger source configuration.

• Returned Value: Discrete; one of BUS, EXT, HOLD, IMM, SCP, TIM, or TTLT0
through TTLT7. The C-SCPI type is string. See the TRIG:SOUR command for
more response data information.

Usage TRIG:SOUR? ask HP E1419 to return trigger source
configuration

TRIGger:TIMer[:PERiod]

TRIGger:TIMer[:PERiod] <trig_interval> sets the interval between scan triggers.
Used with the TRIG:SOUR TIMER trigger mode.

Parameters
Parameter

Name
Parameter

Type
Range of
Values

Default
Units

trig_interval numeric (float32)
(string)

100E-6 to 6.5536 |
MIN | MAX

seconds

Comments • In order for the TRIG:TIMER to start it must be Armed. For information on timer
arming see the ARM subsystem in this command reference.

• The default interval is 10E-3 seconds. interval may be specified in seconds,
milliseconds (ms), or microseconds (us). For example; .0016, 1.6ms or 1600us.
The resolution for interval is 100 µ second.

• When Accepted: Before INIT only.

TRIGger

314 HP E1419 Command Reference Chapter 6

• Related Commands: TRIG:SOUR TIMER, ARM:SOUR, ARM:IMM, INIT,
TRIG:SOUR?, ALG:EXPL:TIME?

• *RST Condition: TRIG:TIM 1.0E-3

Usage TRIG:TIMER 1.0E-1 Set the module to scan inputs and execute
all algorithms every 100 mS

TRIG:TIMER 1 Set the module to scan inputs and execute
all algorithms every second

TRIGger:TIMer[:PERiod]?

TRIGger:TIMer[:PERiod]? returns the currently set Trigger Timer interval.

Comments • Returned Value: Numeric 1 through 6.5536. The C-SCPI type is float32.

• Related Commands: TRIG:TIMER

• *RST Condition: 1.0E-4

Usage TRIG:TIMER? Query trig timer

enter statement Returns the timer setting

TRIGger

Chapter 6 HP E1419 Command Reference 315

Common Command Reference

The following reference discusses the HP E1419 IEEE-488.2 Common commands.

*CAL?

Calibration command. The calibration command causes the Channel Calibration
function to be performed for every module channel. The Channel Calibration
function includes calibration of A/D Offset, and Gain and Offset for all 64 channels. This
calibration is accomplished using internal calibration references. The *CAL? command causes the
module to calibrate A/D offset and gain, and all channel offsets. This may take many minutes to
complete. The actual time it will take your HP E1419 to complete *CAL? depends on the mix of
SCPs installed. *CAL performs literally hundreds of measurements of the internal calibration sources
for each channel and must allow 17 time constants of settling wait each time a filtered channel’s
calibrations source value is changed. The *CAL procedure is internally very sophisticated and results
in an extremely well calibrated module.

To perform Channel Calibration on multiple HP E1419s, use CAL:SETup.

• Returned Value:

Value Meaning Further Action

0 Cal OK None

-1 Cal Error Query the Error Queue (SYST:ERR?)
See Error Messages in Appendix B

The C-SCPI type for this returned value is int16.

• When Accepted: Not while INITiated

• Related Commands: CALibration:SETup, CALibration:SETup?,
CALibration:STORe ADC

• CAL:STOR ADC stores the calibration constants for *CAL? and CAL:SETup
into non-volatile memory.

• Executing this command does not alter the module’s programmed state (function,
range, etc.). It does however clear STAT:QUES:COND? register bit 13.

NOTE If Open Transducer Detect (OTD) is enabled when *CAL? is executed, the module
will disable OTD, wait 1 minute to allow channels to settle, perform the calibration,
and then re-enable OTD. If your program turns off OTD before executing *CAL?, it
should also wait 1 minute for settling.

316 HP E1419 Command Reference Chapter 6

*CLS

Clear Status Command. The *CLS command clears all status event registers
(Standard Event Status Event Register, Standard Operation Status Event Register,
Questionable Data Event Register) and the instrument’s error queue. This clears the
corresponding summary bits (bits 3, 5, & 7) in the Status Byte Register. *CLS does
not affect the enable bits in any of the status register groups. (The SCPI command
STATus:PRESet does clear the Operation Status Enable and Questionable Data
Enable registers.) *CLS disables the Operation Complete function (*OPC
command) and the Operation Complete Query function (*OPC? command).

*DMC <name>,<cmd_data>

Define Macro Command. Assigns one, or a sequence of commands to a named
macro.

The command sequence may be composed of SCPI and/or Common commands.

 <name> may be the same as a SCPI command, but may not be the same as a
Common command. When a SCPI named macro is executed, the macro rather than
the SCPI command is executed. To regain the function of the SCPI command,
execute *EMC 0 command.

<cmd_data> is sent as arbitrary block program data (see page 6-185).

*EMC

Enable Macro Command. When <enable> is non-zero, macros are enabled. When
<enable> is zero, macros are disabled.

*EMC?

Enable Macro query. Returns either 1 (macros are enabled), or 0 (macros are
disabled).

*ESE <mask>

Standard Event Status Enable Register Command. Enables one or more events in the
Standard Event Status Register to be reported in bit 5 (the Standard Event Status
Summary Bit) of the Status Byte Register. You enable an event by specifying its
decimal weight for <mask>. To enable more than one event (bit), specify the sum of
the decimal weights. The C-SCPI type for <mask> is int16.

Common Command Reference

Chapter 6 HP E1419 Command Reference 317

Bit # 7 6 5 4 3 2 1 0

Weighted Value 128 64 32 16 8 4 2 1

Event power-On User
Request

Command
Error

Execution
Error

Device Dependent
Error

Query
Error

Request
Control

Operation
Complete

*ESE?

Standard Event Status Enable Query. Returns the weighted sum of all enabled
(unmasked) bits in the Standard Event Status Register. The C-SCPI type for this
returned value is int16.

*ESR?

Standard Event Status Register Query. Returns the weighted sum of all set bits in the
Standard Event Status Register. After reading the register, *ESR? clears the register.
The events recorded in the Standard Event Status Register are independent of
whether or not those events are enabled with the *ESE command to set the Standard
Event Summary Bit in the Status Byte Register. The Standard Event bits are
described in the *ESE command. The C-SCPI type for this returned value is int16.

*GMC? <name>

Get Macro query. Returns arbitrary block response data which contains the
command or command sequence defined for <name>. For more information on
arbitrary block response data see page 6-185.

*IDN?

Identity. Returns the device identity. The response consists of the following four
fields (fields are separated by commas):

• Manufacturer
• Model Number
• Serial Number (returns 0 if not available)
• Driver Revision (returns 0 if not available)

*IDN? returns the following response strings depending on model and options:
HEWLETT-PACKARD,E1419B,<serial number>,<revision number>

• The C-SCPI type for this returned value is string.

NOTE The revision will vary with the revision of the driver software installed in your
system. This is the only indication of which version of the driver is installed.

Common Command Reference

318 HP E1419 Command Reference Chapter 6

*LMC?

Learn Macros query. Returns a quoted string name for each currently defined macro.
If more than one macro is defined, the strings are separated by commas (,). If no
macro is defined, *LMC? returns a null string.

*OPC

Operation Complete. Causes an instrument to set bit 0 (Operation Complete
Message) in the Standard Event Status Register when all pending operations
invoked by SCPI commands have been completed. By enabling this bit to be
reflected in the Status Byte Register (*ESE 1 command), you can ensure
synchronization between the instrument and an external computer or between
multiple instruments.

NOTE Do not use *OPC to determine when the CAL:SETUP or CAL:TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.

*OPC?

Operation Complete Query. Causes an instrument to place a 1 into the instrument’s
output queue when all pending instrument operations invoked by SCPI commands
are finished. By requiring your computer to read this response before continuing
program execution, you can ensure synchronization between one or more
instruments and the computer. The C-SCPI type for this returned value is int16.

NOTE Do not use *OPC? to determine when the CAL:SETUP or CAL:TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.

Common Command Reference

Chapter 6 HP E1419 Command Reference 319

*PMC

Purge Macros Command. Purges all currently defined macros.

*RMC <name>

Remove individual Macro Command. Removes the named macro command.

*RST

Reset Command. Resets the HP E1419 as follows:

• Erases all algorithms
• All elements in the Input Channel Buffer (I100 - I163) set to zero.
• All elements in the Output Channel Buffer (O100-O163) set to zero
• Defines all Analog Input channels to measure voltage
• Configures all Digital I/O channels as inputs
• Resets HP E1531 and HP E1532 Analog Output SCP channels to zero

• When Accepted: Not while INITiated

WARNING Note the change in character of output channels when *RST is received. Digital
outputs change to inputs (appearing now is 1kW to +3v, a TTL one), and analog
control outputs change to zero (current or voltage). Keep these changes in mind
when applying the HP E1419 to your system, or engineering a system for operation
with the HP E1419. Also note that each analog output channels disconnects for
5-6 milliseconds to discharge to zero at each *RST.

It isn’t difficult to have the HP E1419 signal your system when *RST is executed. A
solution that can provide signals for several types of failures as well as signaling
when *RST is executed is the HP E1535 Watchdog Timer SCP. The Watchdog SCP
even has an input through which you can command all of the HP E1419’s channels
to disconnect from your system.

• Sets the trigger system as follows:
– TRIGGER:SOURCE TIMER
– TRIGGER:TIMER 10E-3
– TRIGGER:COUNT 0 (infinite)
– ARM:SOURCE IMMEDIATE

• SAMPLE:TIMER 10E-6
• Aborts all pending operations, returns to Trigger Idle state
• Disables the *OPC and *OPC? modes
• MEMORY:VME:ADDRESS 240000; MEMORY:VME:STATE OFF;

MEMORY:VME:SIZE 0
• Sets STAT:QUES:COND? bit 13

Common Command Reference

320 HP E1419 Command Reference Chapter 6

*RST does not affect:

• Calibration data
• The output queue
• The Service Request Enable (SRE) register
• The Event Status Enable (ESE) register

*SRE <mask>

Service Request Enable. When a service request event occurs, it sets a
corresponding bit in the Status Byte Register (this happens whether or not the event
has been enabled (unmasked) by *SRE). The *SRE command allows you to identify
which of these events will assert an HP-IB service request (SRQ). When an event is
enabled by *SRE and that event occurs, it sets a bit in the Status Byte Register and
issues an SRQ to the computer (sets the HP-IB SRQ line true). You enable an event
by specifying its decimal weight for <mask>. To enable more than one event,
specify the sum of the decimal weights. Refer to "The Status Byte Register"r for a
table showing the contents of the Status Byte Register. The C-SCPI type for
<mask> is int16.

Bit # 7 6 5 4 3 2 1 0

Weighted Value 128 64 32 16 8 4 2 1

Event Operation
Status

Request
Service

Standard
Event

Message
Available

Questionable
Status

not used not used not used

*SRE?

Status Register Enable Query. Returns the weighted sum of all enabled (unmasked)
events (those enabled to assert SRQ) in the Status Byte Register. The C-SCPI type
for this returned value is int16.

*STB?

Status Byte Register Query. Returns the weighted sum of all set bits in the Status
Byte Register. Refer to the *ESE command earlier in this chapter for a table
showing the contents of the Status Byte Register. *STB? does not clear bit 6
(Service Request). The Message Available bit (bit 4) may be cleared as a result of
reading the response to *STB?. The C-SCPI type for this returned value is int16.

*TRG

Trigger. Triggers an instrument when the trigger source is set to bus (TRIG:SOUR
BUS command) and the instrument is in the Wait for Trigger state.

Common Command Reference

Chapter 6 HP E1419 Command Reference 321

*TST?
Self-Test. Causes an instrument to execute extensive internal self-tests and
returns a response showing the results of the self-test.

NOTES 1. During the first 5 minutes after power is applied, *TST? may fail. Allow the
module to warm-up before executing *TST?.

2. Module must be screwed securely to mainframe.

3. The HP E1419 C-SCPI driver for MS-DOS® implements two versions of
*TST. The default version is an abbreviated self test that executes only the
Digital Tests. By loading an additional object file, you can execute the full self
test as described below. See the documentation that comes with the HP E1419
C-SCPI driver for MS-DOS®.

Comments • Returned Value:

Value Meaning Further Action

0 *TST? OK None

-1 *TST? Error Query the Error Queue (SYST:ERR?)
for error 3052. See explanation below.

• IF error 3052 ’Self test failed. Test info in FIFO’ is returned. A FIFO value of 1
through 99 or >=300 is a failed test number. A value of 100 through 163 is a
channel number for the failed test. A value of 200 through 204 is an A/D range
number for the failed test where 200=.0625, 201=.25V, 202=1V, 203=4V, and
204=16V ranges. For example DATA:FIFO? returns the values 72 and 108. This
indicates that test number 72 failed on channel 8.

Test numbers 20, 30-37, 72, 74-76, and 80-93 may indicate a problem with a
Signal Conditioning Plug-on.

For tests 20, and 30-37, remove all SCPs and see if *TST? passes. If so, replace
SCPs one at a time until you find the one causing the problem.

For tests 72, 74-76, and 80-93, try to re-seat the SCP that the channel number(s)
points to, or move the SCP and see if the failure(s) follow the SCP. If the
problems move with the SCP, replace the SCP.

These are the only tests where the user should troubleshoot a problem. Other tests
which fail should be referred to qualified repair personnel.

Common Command Reference

322 HP E1419 Command Reference Chapter 6

NOTE Executing *TST? returns the module to its *RST state. *RST causes the FIFO data
format to return to its default of ASC,7. If you want to read the FIFO for *TST?
diagnostic information and you want that data in other than the ASCII,7 format, be
certain to set the data FIFO format to the desired format (FORMAT command) after
completion of *TST? but before executing a SENSE:DATA:FIFO: query command.

• The C-SCPI type for this returned value is int16.

• Following *TST?, the module is placed in the *RST state. This returns many of
the module’s programmed states to their defaults. See page 3-53 for a list of the
module’s default states.

• *TST? performs the following tests on the HP E1419 and installed Signal
Conditioning Plug-ons:

DIGITAL TESTS:

Test# Description

1-3: Writes and reads patterns to registers via A16 & A24
4-5: Checks FIFO and CVT
6: Checks measurement complete (Measuring) status bit
7: Checks operation of FIFO half and FIFO full IRQ generation
8-9: Checks trigger operation

ANALOG FRONT END DIGITAL TESTS:

Test# Description

20: Checks that SCP ID makes sense
30-32: Checks relay driver and fet mux interface with EU CPU
33,71: Checks opening of all relays on power down or input overvoltage
34-37: Check fet mux interface with A/D digital

ANALOG TESTS:

Test# Description

40-42: Checks internal voltage reference

ANALOG TESTS: (continued)

Test# Description

43-44: Checks zero of A/D, internal cal source and relay drives
45-46: Checks fine offset calibration DAC
47-48: Checks coarse offset calibration DAC
49: Checks internal + and -15V supplies

Common Command Reference

Chapter 6 HP E1419 Command Reference 323

50-53: Checks internal calibration source
54-55: Checks gain calibration DAC
56-57: Checks that autorange works
58-59: Checks internal current source
60-63: Checks front end and A/D noise and A/D filter
64: Checks zeroing of coarse and fine offset calibration DACs
65-70: Checks current source and CAL BUS relay and relay drives and OHM

relay drive
71: See 33
72-73: Checks continuity through SCPs, bank relays and relay drivers
74: Checks open transducer detect
75: Checks current leakage of the SCPs
76: Checks voltage offset of the SCPs
80: Checks mid-scale strain dac output. Only reports first channel of SCP.
81: Checks range of strain dac. Only reports first channel of SCP.
82: Checks noise of strain dac. Only reports first channel of SCP.
83: Checks bridge completion leg resistance each channel.
84: Checks combined leg resistance each channel.
86: Checks current source SCP’s OFF current.
87: Checks current source SCP’s current dac mid-scale.
88: Checks current source SCP’s current dac range on HI and LO ranges.
89: Checks current source compliance
90: Checks strain SCP’s Wagner Voltage control.
91: Checks autobalance dac range with input shorted.
92: Sample and Hold channel holds value even when input value changed.
93: Sample and Hold channel held value test for droop rate.

ANALOG OUTPUT AND DIGITAL I/O TESTS

301: Current and Voltage Output SCPs digital DAC control.
302: Current and Voltage Output SCPs DAC noise.

303: Current Output SCP offset
304: Current Output SCP gain shift
305: Current Output SCP offset
306: Current Output SCP linearity
307: Current Output SCP linearity
308: Current Output SCP turn over

313: Voltage Output SCP offset
315: Voltage Output SCP offset
316: Voltage Output SCP linearity
317: Voltage Output SCP linearity
318: Voltage Output SCP turn over

331: Digital I/O SCP internal digital interface
332: Digital I/O SCP user input
333: Digital I/O SCP user input

Common Command Reference

324 HP E1419 Command Reference Chapter 6

334: Digital I/O SCP user output
335: Digital I/O SCP user output
336: Digital I/O SCP output current
337: Digital I/O SCP output current

341: Freq/PWM/FM SCP internal data0 register
342: Freq/PWM/FM SCP internal data1 register
343: Freq/PWM/FM SCP internal parameter register
344: Freq/PWM/FM SCP on-board processor self-test
345: Freq/PWM/FM SCP on-board processor self-test
346: Freq/PWM/FM SCP user inputs
347: Freq/PWM/FM SCP user outputs
348: Freq/PWM/FM SCP outputs ACTive/PASSive
349: Freq/PWM/FM SCP output interrupts

350: Watchdog SCP enable/disable timer
351: Watchdog SCP relay drive and coil closed
352: Watchdog SCP relay drive and coil open
353: Watchdog SCP I/O Disconnect line
354: Watchdog SCP I/O Disconnect supply

*WAI

Wait-to-continue. Prevents an instrument from executing another command until the
operation begun by the previous command is finished (sequential operation).

NOTE Do not use *WAI to determine when the CAL:SETUP or CAL:TARE commands
have completed. Instead, use their query forms CAL:SETUP? or CAL:TARE?.
CAL:SETUP? and CAL:TARE? return a value only after the CAL:SETUP or
CAL:TARE operations are complete.

Common Command Reference

Chapter 6 HP E1419 Command Reference 325

 Command Quick Reference

The following tables summarize SCPI and IEEE-488.2 Common (*) commands for
the HP E1419A Multifunction3OXV.

SCPI Command Quick Reference

Command Description
ABORt Stops scanning immediately and sets trigger system to idle state (scan

lists are unaffected)
ALGorithm Subsystem to define, configure, and enable loop control algorithms

[:EXPLicit]
:ARRay <alg_name>,<array_name>,<block_data> Defines contents of array <array_name> in algorithm <alg_name> or if

<alg_name> is "GLOBALS", defines values global to all algorithms.
:ARRay? <alg_name>,<array_name> Returns block data from <array_name> in algorithm <alg_name> or if

<alg_name> is "GLOBALS", returns values from a global array.
:DEFine <alg_name>[,<swap_size>],<program_data> Defines algorithms or global variables. <program_data> is ’C’ source of

algorithm or global declaration.
:SCALar <alg_name>,<var_name>,<value> Defines value of variable <var_name> in algorithm <alg_name> or if

<alg_name> is "GLOBALS", defines a value global to all algorithms.
:SCALar? <alg_name>,<var_name> Returns value from <var_name> in algorithm <alg_name> or if

<alg_name> is "GLOBALS", returns a value from global variable.
:SCAN

:RATio <alg_name>,<ratio> Sets scan triggers per execution of <alg_name> (send also ALG:UPD)
:RATio? <alg_name> Returns scan triggers per execution of <alg_name>

:SIZe? <alg_name> Returns size in words of named algorithm
:STATe <alg_name>,ON | OFF Enables/disables named algorithm after ALG:UPDATE sent
:STATe? <alg_name> Returns state of named algorithm
:TIME? <alg_name> | MAIN Returns worst case alg execution time. Use "MAIN" for overall time.

:FUNCtion
:DEFine <function_name>,<range>,<offset>,<func_data> Defines a custom conversion function

:OUTPut
:DELay <delay> | AUTO Sets the delay from scan trigger to start of outputs
:DELay? Returns the delay from scan trigger to start of outputs

:UPDate
[:IMMediate] Requests immediate update of algorithm code, variable, or array
:CHANnel (@<channel> Sets dig channel to synch algorithm updates
:WINDow <num_updates> Sets a window for num_updates to occur. *RST default is 20
:WINDow? Returns setting for allowable number variable and algorithm updates.

ARM
[:IMMediate] Arm if ARM:SOUR is BUS or HOLD (software ARM)
:SOURce BUS | EXT | HOLD | IMM | SCP | TTLTrg<n> Specify the source of Trigger Timer ARM
:SOURce? Return current ARM source

CALibration
:CONFigure Prepare to measure on-board references with an external multimeter

:RESistance Configure to measure reference resistor
:VOLTage <range>, ZERO | FSCale Configure to measure reference voltage range at zero or full scale

:SETup Performs Channel Calibration procedure
:SETup? Returns state of CAL:SETup operation (returns error codes or 0 for OK)
:STORe ADC | TARE Store cal constants to Flash RAM for either A/D calibration or those

generated by the CAL:TARE command

326 HP E1419 Command Reference Chapter 6

SCPI Command Quick Reference

Command Description
CALibration (cont.)

:TARE (@<ch_list>) Calibrate out system field wiring offsets
:RESet Resets cal constants from CAL:TARE back to zero for all channels

:TARE? Returns state of CAL:TARE operation (returns error codes or 0 for OK)
:VALue

:RESistance <ref_ohms> Send to instrument the value of just measured reference resistor
:VOLTage <ref_volts> Send to instrument the value of just measured voltage reference

:ZERO? Correct A/D for short term offset drift (returns error codes or 0 for OK)

DIAGnostic
:CALibration

:SETup
[:MODE] 0 | 1 Set analog DAC output SCP calibration mode
[:MODE]? Return current setting of DAC calibration mode

:TARe
[:OTD]

[:MODE] 0 | 1 Set mode to control OTD current during tare calibration
[:MODE]? Return current setting of OTD control during tare calibration

:CHECksum? Perform checksum on Flash RAM and return a ’1’ for OK, a ’0’ for

corrupted or deleted memory contents
:COMMand

:SCPWRITE <reg_addr>,<reg_data> Writes values to SCP registers
:CUSTom

:LINear <table_ad_range>,<table_block>,(@<ch_list>) Loads linear custom EU table
:PIECewise <table_ad_range>,<table_block>,(@<ch_list>) Loads piecewise custom EU table
:REFerence:TEMPerature Puts the contents of the Reference Temperature Register into the FIFO

:FLOor <range>,(@<ch_list>) Sets the lowest range that autorange can select for the specified channels
:DUMP Places the autorange floor value for all 64 channels into the FIFO

:INTerrupt[:LINe] <intr_line> Sets the VXIbus interrupt line the module will use
:INTerrupt[:LINe]? Returns the VXIbus interrupt line the module is using
:OTDetect[:STATe] ON | OFF, (@<ch_list>) Controls "Open Transducer Detect" on SCPs contained in <ch_list>
:OTDetect[:STATe]? (@<channel>) Returns current state of OTD on SCP containing <channel>
:QUERy

:SCPREAD? <reg_addr> Returns value from an SCP register
:VERSion? Returns manufacturer, model, serial#, flash revision #, and date

e.g. HEWLETT-PACKARD,E1419B,US34000478,A.04.00,

Wed Jul 08 11:06:22 MDT 1994
FETCh? Return readings stored in VME Memory (format set by FORM cmd)

FORMat
[:DATA] < format>[, <size>] Set format for response data from [SENSe:]DATA?

 ASCii[, 7] Seven bit ASCII format (not as fast as 32-bit because of conversion)
 PACKed[, 64] Same as REAL, 64 except NaN, +INF, and -INF format compatible

with HP BASIC
 REAL[, 32] IEEE 32-bit floating point (requires no conversion so is fastest)
 REAL, 64 IEEE 64-bit floating point (not as fast as 32-bit because of conversion)

[:DATA]? Returns format: REAL, +32 | REAL, +64 | PACK, +64 | ASC, +7
INITiate

[:IMMediate] Put module in Waiting for Trigger state (ready to make one scan)

 Command Quick Reference

Chapter 6 HP E1419 Command Reference 327

SCPI Command Quick Reference

Command Description
INPut

:FILTer Control filter Signal Conditioning Plug-ons
[:LPASs]

:FREQuency <cutoff_freq>,(@<ch_list>) Sets the cutoff frequency for active filter SCPs
:FREQuency? (@<channel>) Returns the cutoff frequency for the channel specified
[:STATe] ON | OFF, (@<channel>) Turn filtering OFF (pass through) or ON (filter)
[:STATe]? (@<channel>) Return state of SCP filters

:GAIN <chan_gain>,(@<ch_list>) Set gain for amplifier-per-channel SCP
:GAIN? (@<channel>) Returns the channel’s gain setting
:LOW <wvolt_type>,(@<ch_list>) Controls the connection of input LO on a Strain Bridge (Opt. 21 SCP)
:LOW? (@<channel>) Returns the LO connection for the Strain Bridge at channel

:POLarity NORmal | INVerted,(@<ch_list>) Sets input polarity on a digital SCP channel
:POLarity? (@<channel>) Returns digital polarity currently set for <channel

MEMory
:VME

:ADDRess <mem_address> Specify address of VME memory card to be used as reading storage
:ADDRess? Returns address of VME memory card
:SIZE <mem_size> Specify number of bytes of VME memory to be used to store readings
:SIZE? Returns number of VME memory bytes allocate to reading storage
:STATe 1 | 0 | ON | OFF Enable or disable reading storage in VME memory at INIT
:STATe? Returns state of VME memory, 1=enabled, 0=disabled

OUTPut
:CURRent

:AMPLitude <amplitude>,(@<ch_list>) Set amplitude of Current Source SCP channels
:AMPLitude? (@<channel>) Returns the setting of the Current Source SCP channel
:STATe ON | OFF,(@<ch_list>) Enable or disable the Current Source SCP channels
:STATe? (@<channel>) Returns the state of the Current Source SCP channel

:POLarity NORmal | INVerted,(@<ch_list>) Sets output polarity on a digital SCP channel
:POLarity? (@<channel>) Returns digital polarity currently set for <channel>
:SHUNt ON | OFF,(@<ch_list>) Adds shunt resistance to leg of Bridge Completion SCP channels
:SHUNt? (@<channel>) Returns the state of the shunt resistor on Bridge Completion SCP channel
:TTLTrg

:SOURce FTRigger | LIMit | SCPlugon | TRIGger Sets the internal trigger source that can drive the VXIbus TTLTrg lines
:SOURce? Returns the source of TTLTrg drive.

:TTLTrg<n>
[:STATe] ON | OFF When module triggered, source a VXIbus trigger on TTLTrg<n>
[:STATe]? Returns whether the TTL trigger line specified by n is enabled

:TYPE PASSive | ACTive,(@<ch_list>) sets the output drive type for a digital channel
:TYPE? (@<channel>) Returns the output drive type for <channel>
:VOLTage

:AMPLitude <amplitude>,(@<ch_list>) Sets the voltage amplitude on Voltage Output and Strain SCPs
:AMPLitude? (@<channel>) Returns the voltage amplitude setting

ROUTe
:SEQuence

:DEFine? AIN | AOUT | DIN | DOUT Returns comma separated list of channels in analog I, O, dig I, O ch lists
:POINts? AIN | AOUT | DIN | DOUT Returns number of channels defined in above lists.

SAMPle
:TIMer <num_samples>,(@<ch_list>) Sets number of samples that will be made on channels in <ch_list>
:TIMer? (@<channel>) Returns number of samples that will be made on channels in <ch_list>

[SENSe:]
CHANnel

:SETTling <settle_time>,(@<ch_list>) Sets the channel settling time for channels in ch_list

:SETTling? (@<channel>) Returns the channel settling time for channel

 Command Quick Reference

328 HP E1419 Command Reference Chapter 6

SCPI Command Quick Reference

Command Description

DATA
:CVTable? (@<ch_list>) Returns elements of Current Value Table specified by ch_list

:RESet Resets all entries in the Current Value Table to IEEE "Not-a-number"
:FIFO

[:ALL]? Fetch all readings until instrument returns to trigger idle state
:COUNt? Returns the number of measurements in the FIFO buffer

:HALF? Returns 1 if at least 32,768 readings are in FIFO, else returns 0
:HALF? Fetch 32,768 readings (half the FIFO) when available
:MODE BLOCK | OVERwrite Set FIFO mode.
:MODE? Return the currently set FIFO mode
:PART? <n_readings> Fetch n_readings from FIFO reading buffer when available
:RESet Reset the FIFO counter to 0

FREQuency
:APERture <gate_time>,(@<ch_list>) Sets the gate time for frequency counting
:APERture? (@<channel>) Returns the gate time set for frequency counting

FUNCtion Equate a function and range with groups of channels
:CONDition (@<ch_list>) Sets function to sense digital state
:CUSTom [<range>,](@<ch_list>) Links channels to custom EU conversion table loaded by

DIAG:CUST:LIN or DIAG:CUST:PIEC commands
:REFerence [<range>,](@<ch_list>) Links channels to custom reference temperature EU conversion table

loaded by DIAG:CUST:PIEC commands
:TC <type>,[<range>,](@<ch_list>) Links channels to custom temperature EU conversion table loaded by

DIAG:CUST:PIEC, and performs ref temp compensation for <type>
:FREQuency (@<ch_list>) Configure channels to measure frequency
:RESistance <excite_current>,[<range>,](@<ch_list>) Configure channels to sense resistance measurements
:STRain Links measurement channels as having read bridge voltage from:

:FBENding [<range>,](@<ch_list>) Full BENding
:FBPoisson [<range>,](@<ch_list>) Full Bending Poisson
:FPOisson [<range>,](@<ch_list>) Full POisson
:HBENding [<range>,](@<ch_list>) Half BENding
:HPOisson [<range>,](@<ch_list>) Half Poisson
[:QUARter] [<range>,](@<ch_list>) QUARter

RTD, 85 | 92 RTDs
TCouple, CUST | E | EEXT | J | K | N | S | T thermocouples
THERmistor, 2250 | 5000 | 10000 thermistors

:TEMPerature <sensor_type>,<sub_type>,

[<range>,](@<ch_list>)

Configure channels for temperature measurement types above:

excitation current comes from Current Output SCP.
:TOTalize (@<ch_list>) Configure channels to count digital state transitions
:VOLTage[:DC] [<range>,](@<ch_list>) Configure channels for DC voltage measurement

RTD, 85 | 92 RTDs
THERmistor,5000 thermistors

:REFerence <sensor_type>,<sub_type>,[<range>,](@<ch_list>) Configure channel for reference temperature measurements above:
:CHANnels (@<ref_channel>),(@<ch_list>) Groups reference temperature channel with TC measurement channels
:TEMPerature <degrees_c> Specifies the temperature of a controlled temperature reference junction

:STRain
:EXCitation <excite_v>,(@<ch_list>) Specifies the Excitation Voltage by channel to the strain EU conversion

:STRain
:EXCitation <excite_v>,(@<ch_list>) Specifies the Excitation Voltage by channel to the strain EU conversion
:EXCitation? (@<channel>) Returns the Excitation Voltage set for <channel>

 Command Quick Reference

Chapter 6 HP E1419 Command Reference 329

SCPI Command Quick Reference

Command Description
:GFACtor <gage_factor>,(@<ch_list>) Specifies the Gage Factor by channel to the strain EU conversion
:GFACtor? (@<channel>) Returns the Gage Factor set for <channel>
:POISson <poisson_ratio>,(@<ch_list>) Specifies the Poisson Ratio by channel to the strain EU conversion

[SENSe:]STRAin (continued)

:POISson? (@<channel>) Returns the Poisson Ratio set for <channel>
:UNSTrained <unstrained_v>,(@<ch_list>) Specifies the Unstrained Voltage by channel to the strain EU conversion
:UNSTrained? (@<channel>) Returns the Unstrained Voltage set for <channel>

SOURce
:FM

[:STATe] 1 | 0 | ON | OFF,(@<ch_list>) Configure digital channels to output frequency modulated signal
[:STATe]? (@<channel>) Returns state of channels for FM output

:FUNCtion
[:SHAPe]

:CONDition (@<ch_list>) Configures channels to output static digital levels
:PULSe (@<ch_list>) Configures channels to output digital pulse(s)
:SQUare (@<ch_list>) Configures channels to output 50/50 duty cycle digital pulse train

:PULM
:STATe 1 | 0 | ON | OFF,(@<ch_list>) Configure digital channels to output pulse width modulated signal
:STATe? (@<channel>) Returns state of channels for PW modulated output
:PERiod <period>,(@<ch_list>) Sets pulse period for PW modulated signals
:PERiod? ,(@<channel>) Returns pulse period for PW modulated signals
:WIDTh <width>,(@<ch_list>) Sets pulse width for FM modulated signals
:WIDTh? (@<channel>) Returns pulse width setting for FM modulated signals

STATus
:OPERation Operation Status Group: Bit assignments; 0=Calibrating, 4=Measuring,

8=Scan Complete, 10=FIFO Half Full, 11=algorithm interrupt
:CONDition? Returns state of Operation Status signals
:ENABle <enable_mask> Bits set to 1 enable status events to be summarized into Status Byte
:ENABle? Returns the decimal weighted sum of bits set in the Enable register
[:EVENt]? Returns weighted sum of bits that represent Operation status events
:NTRansition <transition_mask> Sets mask bits to enable pos. Condeition Reg. transitions to Event reg
:NTRansition? Returns positive transition mask value
:PTRansition <transition_mask> Sets mask bits to enable neg. Condeition Reg. transitions to Event reg
:PTRansition? Returns negative transition mask value

:PRESet Presets both the Operation and Questionable Enable registers to 0
:QUEStionable Questionable Data Status Group: Bit assignments; 8=Calibration Lost,

9=Trigger Too Fast, 10=FIFO Overflowed, 11=Over voltage, 12=VME

Memory Overflow, 13=Setup Changed.
:CONDition? Returns state of Questionable Status signals
:ENABle <enable_mask> Bits set to 1 enable status events to be summarized into Status Byte
:ENABle? Returns the decimal weighted sum of bits set in the Enable register
[:EVENt]? Returns weighted sum of bits that represent Questionable Data events
:NTRansition <transition_mask> Sets mask bits to enable pos. Condeition Reg. transitions to Event reg
:NTRansition? Returns positive transition mask value
:PTRansition <transition_mask> Sets mask bits to enable neg. Condeition Reg. transitions to Event reg
:PTRansition? Returns negative transition mask value

SYSTem
:CTYPe? (@<channel>) Returns the identification of the SCP at channel

:ERRor? Returns one element of the error queue "0" if no errors
:VERSion? Returns the version of SCPI this instrument complies with

 Command Quick Reference

330 HP E1419 Command Reference Chapter 6

SCPI Command Quick Reference

Command Description
TRIGger

:COUNt <trig_count> Specify the number of trigger events that will be accepted
:COUNt? Returns the current trigger count setting
[:IMMediate] Triggers instrument when TRIG:SOUR is TIMer or HOLD (same as

*TRG and IEEE 488.1 GET commands.
:SOURce BUS | EXT | HOLD | IMM | SCP | TIMer | TTLTrg<n> Specify the source of instrument triggers
:SOURce? Returns the current trigger source
:TIMer Sets the interval between scan triggers when TRIG:SOUR is TIMer

[:PERiod] <trig_interval> Sets the interval between scan triggers when TRIG:SOUR is TIMer
[:PERiod]? Returns setting of trigger timer

 Command Quick Reference

Chapter 6 HP E1419 Command Reference 331

IEEE-488.2 Common Command Quick Reference

Category Command Title Description

Calibration *CAL? Calibrate Performs internal calibration on all 64 channels out to the

terminal module connector. Returns error codes or 0 for OK

Internal Operation *IDN? Identification Returns the response:

HEWLETT-PACKARD,E1419B,<serial#>,<driver rev#>

*RST Reset Resets all scan lists to zero length and stops scan triggering.

Status registers and output queue are unchanged.

*TST? Self Test Performs self test. Returns 0 to indicate test passed.

Status Reporting *CLS Clear Status Clears all status event registers and so their status summary

bits (except the MAV bit).

*ESE <mask> Event Status Enable Set Standard Event Status Enable register bits mask.

*ESE? Event Status Enable query Return current setting of Standard Event Status Enable

register.

*ESR? Event Status Register query Return Standard Event Status Register contents.

*SRE <mask> Service Request Enable Set Service Request Enable register bit mask.

*SRE? Service Request Enable query Return current setting of the Service Request Enable register.

*STB? Read Status Byte query Return current Status Byte value.

Macros *DMC <name>,<cmd_data> Define Macro Command Assigns one, or a sequence of commands to a macro.

*EMC 1 | 0 Enable Macro Command Enable/Disable defined macro commands.

*EMC? Enable Macros query Returns 1 for macros enabled, 0 for disabled.

*GMC? <name> Get Macro query Returns command sequence for named macro.

*LMC? Learn Macro query Returns comma-separated list of defined macro names

*PMC Purge Macro Commands Purges all macro commands

*RMC <name> Remove Individual Macro Removes named macro command.

Synchronization *OPC Operation Complete Standard Event register’s Operation Complete bit will be 1

when all pending device operations have been finished.

*OPC? Operation Complete query Places an ASCII 1 in the output queue when all pending

operations have finished.

*TRG Trigger Trigger s module when TRIG:SOUR is HOLD.

*WAI Wait to Complete

 Command Quick Reference

332 HP E1419 Command Reference Chapter 6

Appendix A
Specifications

Power Requirements
(with no SCPs installed) +5V +12V -12V +24V -24V -5.2V

IPm=Peak Module Current IPm IDm IPm IDm IPm IDm IPm IDm IPm IDm IPm IDm

IDm=Dynamic Module Current 1.0 0.02 0.06 0.01 0.01 0.01 0.1 0.01 0.1 0.01 0.15 0.01

Cooling Requirements Average Watts/Slot ∆Pressure (mmH2O) Air Flow (liters/s)

14 0.08 0.08

Power Available for SCPs
(See VXI Catalog or SCP
manuals for SCP current)

1.0A ±24V, 3.5A 5V

Measurement ranges

DC Volts (HP E1501 or HP E1502) ±62.5mV to ±16V Full Scale

Temperature Thermocouples - -200 to +1700 °C
Thermistors - (Opt 15 required) -80 to +160 °C
RTD’s - (Opt 15 required) -200 to +850 °C

Resistance (HP E1505 with HP E1501) 512 ohms to 131 Kohms FS

Strain 25,000 µe or limit of linear range of strain gage

Measurement resolution 16 bits (including sign)

Trigger Timer and
Sample Timer Accuracy

100ppm (.01%) from -10 °C to +70 °C

External Trigger Input TTL compatible input. Negative true edge triggered except first trigger will
occur if external trigger input is held low when module is INITiated. Minimum
pulse width 100nS. Since each trigger starts a complete scan of 2 or more
channel readings, maximum trigger rate depends on module configuration.

Appendix A Specifications 333

Maximum input voltage
(Normal mode plus common mode)

With Direct Input, Passive Filter, or Amplifier SCPs:
Operating: < ±16 V peak Damage level: > ±42 V peak

With HP E1513 Divide by 16 Attenuator SCP:
Operating: < ±60 VDC, < ±42 V peak

Maximum common mode
voltage

With Direct Input, Passive Filter, or Amplifier SCPs:
Operating: < ±16 V peak Damage level: > ±42 V peak

With HP E1513 Divide by 16 Attenuator SCP:
Operating: < ±60 VDC, < ±42 V peak

Common mode rejection 0 to 60Hz -105dB

Input impedance greater than 90 MOhm differential
(1 M Ohm with HP E1513 Attenuator)

On-board Current Source 122 µA ±0.02%, with ±17 Volts Compliance

Maximum tare cal offset SCP Gain = 1 (Maximum tare offset depends on A/D range and SCP gain)

A/D range
±V F.Scale

16 4 1 0.25 0.0625

Max Offset 3.2213 .82101 .23061 .07581 .03792

Notice: Published specifications indicate accuracy degradation when subjected to radiated fields.

The following specifications reflect the performance of the HP E1419 with the HP E1501 Direct Input Signal Conditioning
Plug-on. The performance of the HP E1419 with other SCPs is found in the Specifications section of that SCP’s manual.

Measurement accuracy
DC Volts

(90 days) 23°C ±1°C (with *CAL? done after 1 hr warm up and CAL:ZERO?
within 5 min.).
NOTE: If autoranging is ON:
 for readings <3.8V, add ±.02% to linearity specifications.
 for readings ≥3.8V, add ±.05% to linearity specifications.

A/D range
±V F.Scale

Linearity
% of reading

Offset Error Noise
3 sigma

Noise*
3 sigma

.0625
.25
1
4
16

0.01%
0.01%
0.01%
0.01%
0.01%

5.3 µV
10.3 µV
31 µV

122 µV
488 µV

18 µV
45 µV

110 µV
450 µV
1.8 mV

8 µV
24 µV
90 µV

366 µV
1.5 mV

Temperature Coefficients: Gain - 10ppm/°C. Offset - (0 - 40°C) .14µV/°C, (40 - 55°C) .8µV+.38µV/°C

334 Specifications Appendix A

Temperature Accuracy The following pages have temperature accuracy graphs that include instrument
and firmware linearization errors. The linearization algorithm used is based on
the IPTS-68(78) standard transducer curves. Add your transducer accuracy to
determine total measurement error.

The thermocouple graphs on the following pages include only the errors due to
measuring the voltage output of the thermocouple, as well as the algorithm
errors due to converting the thermocouple voltage to temperature. To this error
must be added the error due to measuring the reference junction temperature
with an RTD or a 5K thermistor. See the graphs for the RTD or the 5K
thermistor to determine this additional error. Also, the errors due to gradients
across the isothermal reference must be added. If an external isothermal
reference panel is used, consult the manufacturer’s specifications. If HP
termination blocks are used as the isothermal reference, see the notes below.

NOTE

1) When using the Terminal Module as the isothermal reference, add ±0.6° C
to the thermocouple accuracy specs to account for temperature gradients
across the Terminal Module. The ambient temperature of the air surrounding
the Terminal Module must be within ±2° C of the temperature of the inlet
cooling air to the VXI mainframe.

2) When using the E1586 Rack-Mount Terminal Panel as the isothermal
reference, add ±0.2° C to the thermocouple accuracy specs to account for
temperature gradients across the E1586. The E1586A should be mounted in
the bottom part of the rack, below and away from other heat sources for best
performance.

The temperature graphs are found on the following pages:

• Thermocouple Type E (-200 to 800°C) 336,337
• Thermocouple Type E (0 to 800°C) . 338,339
• Thermocouple Type EEXtended . 340,341
• Thermocouple Type J . 342,343
• Thermocouple Type K . 344
• Thermocouple Type R . 345,346
• Thermocouple Type S . 347,300
• Thermocouple Type T . 349,350
• Reference Thermistor 5K . 351,352
• Reference RTD 100Ω . 353
• RTD 100Ω . 354,355
• Thermistor 2250Ω . 356,357
• Thermistor 5KΩ . 358,359
• Thermistor 10KΩ . 360,361

Appendix A Specifications 335

336 Specifications Appendix A

Appendix A Specifications 337

338 Specifications Appendix A

Appendix A Specifications 339

340 Specifications Appendix A

Appendix A Specifications 341

342 Specifications Appendix A

Appendix A Specifications 343

344 Specifications Appendix A

Appendix A Specifications 345

346 Specifications Appendix A

Appendix A Specifications 347

348 Specifications Appendix A

Appendix A Specifications 349

350 Specifications Appendix A

Appendix A Specifications 351

352 Specifications Appendix A

Appendix A Specifications 353

354 Specifications Appendix A

Appendix A Specifications 355

356 Specifications Appendix A

Appendix A Specifications 357

358 Specifications Appendix A

Appendix A Specifications 359

360 Specifications Appendix A

Appendix A Specifications 361

Notes

362 Specifications Appendix A

Appendix B
Error Messages

Possible Error Messages:

-108 ’Parameter not allowed’.

-109 ’Missing parameter’

-160 ’Block data error’.

-211 ’Trigger ignored’.

-212 ’Arm ignored’.

-213 ’Init ignored’.

-221 ’Settings conflict’.

-222 ’Data out of range’.

-224 ’Illegal parameter value’.

-240 ’Hardware error’. Execute *TST?.

-253 ’Corrupt media’.

-281 ’Cannot create program’.

-282 ’Illegal program name’.

-310 ’System error’.

-410 ’Query INTERRUPTED’.

1000 ’Out of memory’

2001 ’Invalid channel number’.

2003 ’Invalid word address’.

2007 ’Bus error’.

2008 ’Scan list not initialized’.

2009 ’Too many channels in channel list’.

Appendix B Error Messages 363

2016 ’Byte count is not a multiple of two’.

3000 ’Illegal while initiated’. Operation must be performed
before INIT or INIT:CONT ON.

3004 ’Illegal command. CAL:CONF not sent’. Incorrect
sequence of calibration commands. Send
CAL:CONF:VOLT command before CAL:VAL:VOLT
and send CAL:CONF:RES command before
CAL:VAL:RES

3005 ’Illegal command. Send CAL:VAL:RES’. The only
command accepted after a CAL:CONF:RES is a
CAL:VAL:RES command.

3006 ’Illegal command. Send CAL:VAL:VOLT’. The only
command accepted after a CAL:CONF:VOLT is a
CAL:VAL:VOLT command.

3007 ’Invalid signal conditioning module’. The command sent
to an SCP was illegal for its type.

3008 ’Too few channels in scan list’. A Scan List must contain
at least two channels.

3012 ’Trigger too fast’. Scan list not completed before another
trigger event occurs.

3015 ’Channel modifier not permitted here’.

3019 ’TRIG:TIM interval too small for SAMP:TIM interval
and scan list size’. TRIG:TIM interval must allow for
completion of entire scan list at currently set SAMP:TIM
interval. See TRIG:TIM in Chapter 5, the Command
Reference

3020 ’Input overvoltage’. Calibration relays opened (if
JM2202 not cut) to protect module inputs, and
Questionable Data Status bit 11 set. Execute *RST to
close relays and/or reset status bit.

3021 ’FIFO overflow’. Lets you know that the FIFO buffer has
filled and that one or more readings have been lost.
Usually caused by algorithm values stored in FIFO faster
than FIFO was read.

3026 ’Calibration failed’.

3027 ’Unable to map A24 VXI memory’.

364 Error Messages Appendix B

3028 ’Incorrect range value’. Range value sent is not supported
by instrument.

3030 ’Command not yet implemented!!’.

3032 ’0x1: DSP-Unrecognized command code’.

3033 ’0x2: DSP-Parameter out of range’.

3034 ’0x4: DSP-Flash rom erase failure’.

3035 ’0x8: DSP-Programming voltage not present’.

3036 ’0x10: DSP-Invalid SCP gain value’. Check that SCP is
seated or replace SCP. Channel numbers are in FIFO.

3037 ’0x20: DSP-Invalid *CAL? constant or checksum.
*CAL? required.’.

3038 ’0x40: DSP-Couldn’t cal some channels’. Check that
SCP is seated or replace SCP. Channel numbers are in
FIFO.

3039 ’0x80: DSP-Re-Zero of ADC failed’.

3040 ’0x100: DSP-Invalid Tare CAL constant or checksum’.
Perform CAL:TARE - CAL:TARE? procedure.

3041 ’0x200: DSP-Invalid Factory CAL constant or
checksum’. Perform A/D Cal procedure.

3042 ’0x400: DSP-DAC adjustment went to limit’. Execute
*TST?

3043 ’0x800: DSP Status--Do *CAL?’.

3044 ’0x1000: DSP-Overvoltage on input’.

3045 ’0x2000: DSP-reserved error condition’.

3046 ’0x4000: DSP-ADC hardware failure’.

3047 ’0x8000: DSP-reserved error condition’.

3048 ’Calibration or Test in Process’.

3049 ’Calibration not in Process’.

Appendix B Error Messages 365

3050 ’ZERO must be sent before FSCale’. Perform A/D Cal
sequence as shown in Command Reference under
CAL:CONF:VOLT

3051 ’Memory size must be multiple of 4’. From
MEM:VME:SIZE. Each HP E1419 reading requires 4
bytes.

3052 ’Self test failed. Test info in FIFO’. Use
SENS:DATA:FIFO:ALL? to retrieve data from FIFO.

NOTE: *TST? always sets the FIFO data FORMat to
ASCII,7. Read FIFO data into string variables.

Meaning of *TST? FIFO data by Value

FIIFO Value Definition

1 - 99 ID number of failed test (see following table for
possible corrective actions)

100 - 163 channel number(s) associated with test (ch 0-63)

164 special "channel" used for A/D tests only

200 A/D range 0.0625V associated with failed test

201 A/D range 0.25V associated with failed test

202 A/D range 1V associated with failed test

203 A/D range 4V associated with failed test

204 A/D range 16V associated with failed test

Possible Corrective Action by Failed Test ID Number

Test ID Corrective Actions

1 - 19, 21 - 29 (HP Service)*

20, 30 -37 Remove all SCPs and see if *TST? passes. If so,
replace SCPs one at a time until you find the one
causing the problem.

38 - 71 (HP Service)*

72,74 - 76, 80 - 93,
301 - 354

re-seat the SCP that the channel number(s) points
to, or move the SCP and see if the failure(s)
follow the SCP. If the problems move with the
SCP, replace the SCP.

73, 77 - 79, 94 - 99 (HP Service)*

*Must send module to an HP Service Center for repair.
Record information found in FIFO to assist the HP
Service Center in repairing the problem.

366 Error Messages Appendix B

Refer to the Command Reference under *TST? for a list
of module functions tested.

NOTE During the first 5 minutes after power is applied, *TST? may fail. Allow
the module to warm-up before executing *TST?

3053 ’Corrupt on board Flash memory’.

3056 ’Custom EU not loaded’. May have erased custom
EU conversion table with *RST. May have linked
channel with standard EU after loading custom EU, this
erases the custom EU for this channel. Reload custom EU
table using DIAG:CUST:LIN or DIAG:CUST:PIEC.

3057 ’Invalid ARM or TRIG source when S/H SCP’s enabled’
Don’t set TRIG:SOUR or ARM:SOUR to SCP with
HP E1510 or HP E1511 installed.

3058 ’Hardware does not have D32, S/H, or new trigger
capabilities’. Module’s serial number is earlier than
3313A00530.

3067 ’Multiple attempts to erase Flash Memory failed’

3068 ’Multiple attempts to program Flash Memory failed’

3069 ’Programming voltage jumper not set properly’. See
Disabling Flash Memory Access in Chapter 1 (JM2201)

3070 ’Identification of Flash ROM incorrect’

3071 ’Checksum error on Flash Memory’

3074 ’WARNING! Old Opt 16 or Opt 17 card can damage
SCP modules’ must use HP E1506 or HP E1507.

3075 ’Too many entries in CVT list’

3076 ’Invalid entry in CVT list’ Can only be 10 to 511

3077 ’Too many updates in queue. Must send UPDATE
command’ To allow more updates per ALG:UPD,
increase ALG:UPD:WINDOW

Appendix B Error Messages 367

3078 ’Invalid Algorithm name’ Can only be ’ALG1’ through
’ALG32’, or ’GLOBALS’, or ’MAIN’

3079 ’Algorithm is undefined’ In ALG:SCAL, ALG:SCAL?,
ALG:ARR, or ALG:ARR?

3080 ’Algorithm already defined’ Trying to repeat ALG:DEF
with same <alg_name> (and is not enabled to swap), or
trying to define ’GLOBALS’ again since last *RST

3081 ’Variable is undefined’ Algorithm exists but has no local
variable by that name.

3082 ’Invalid Variable name’ Must be valid ’C’ identifier, see
Chapter 5

3083 ’Global symbol (variable or custom function) already
defined’ Trying to define a global variable with same
name as a user defined function, or vice versa. User
functions are also global.

3084 ’Algorithmic error queue full’ ALG:DEF has generated
too many errors from your algorithm source code

3084 "Error 1: Number too big for a 32 bit float"
"Error 2: Number too big for a 32 bit integer"
"Error 3: ’8’ or ’9’ not allowed in an octal number"
"Error 4: Syntax error"
"Error 5: Expecting ’(’"
"Error 6: Expecting ’)’"
"Error 7: Expecting an expression"
"Error 8: Out of driver memory"
"Error 9: Expecting a bit number (Bn or Bnn)"
"Error 10: Expecting ’]’"
"Error 11: Expecting an identifier"
"Error 12: Arrays can’t be initialized"
"Error 13: Expecting ’static’"
"Error 14: Expecting ’float’"
"Error 15: Expecting ’;’"
"Error 16: Expecting ’,’"
"Error 17: Expecting ’=’"
"Error 18: Expecting ’{’"
"Error 19: Expecting ’}’"
"Error 20: Expecting a statement"
"Error 21: Expecting ’if’"
"Error 22: Can’t write to input channels"
"Error 23: Expecting a constant expression"
"Error 24: Expecting an integer constant expression"
"Error 25: Reference to an undefined variable"
"Error 26: Array name used in a scalar context"
"Error 27: Scalar name used in an array context"

368 Error Messages Appendix B

"Error 28: Variable name used in a custom function
context"

"Error 29: Reference to an undefined custom function"
"Error 30: Can’t have executable code in GLOBALS

definition"
"Error 31: CVT address range is 10 - 511"
"Error 32: Numbered algorithms can only be called from

MAIN"
"Error 33: Reference to an undefined algorithm"
"Error 34: Attempt to redefine an existing symbol

(var or fn)"
"Error 35: Array size is 1 - 1024"
"Error 36: Expecting a default PID parameter"
"Error 37: Too many FIFO or CVT writes per scan

trigger"
"Error 38: Statement is too complex"
"Error 39: Unterminated comment"

3085 ’Algorithm too big’ Algorithm exceded 46K words (23K
if enabled to swap), or exceded size specified in
<swap_size>.

3086 ’Not enough memory to compile Algorithm’ Your
algorithm’s constructs are using too much translator
memory. Need more memory in your HP E1406. Try
breaking your algorithm into smaller algorithms.

3088 ’Too many functions’ Limit is 32 user defined functions

3089 ’Bad Algorithm array index’ Must be from 0 to
(declared size)-1

3090 ’Algorithm Compiler Internal Error’ Call HP with details
of operation.

3091 ’Illegal while not initiated’ Send INIT before this
command

3092 ’No updates in queue’

3093 ’Illegal Variable Type’ Sent ALG:SCAL with identifier
of array, ALG:ARR with scalar identifier,
ALG:UPD:CHAN with identifier that is not a channel,
etc.

3094 ’Invalid Array Size’ Must be 1 to 1024

3095 ’Invalid Algorithm Number’ Must be ’ALG1’ to
’ALG32’

Appendix B Error Messages 369

3096 ’Algorithm Block must contain termination ’ Must
append a null byte to end of algorithm string within the
Block Data

3097 ’Unknown SCP. Not Tested’ May receive if you are
using a breadboard SCP

3099 ’Invalid SCP for this product’

3100 ’Analog Scan time to big. Too much settling time’ Count
of channels referenced by algorithms combined with use
of SENS:CHAN:SETTLING has attempted to build an
analog Scan List greater than 64 channels.

3101 ’Can’t define new algorithm while running’ Execute
ABORT, then define algorithm

3102 ’Need ALG:UPD before redefining this algorithm again’
Already have an algorithm swap pending for this
algorithm.

3103 ’Algorithm swapping already enabled; Can’t change size’
Only send <swap_size> parameter on initial definition.

3104 ’GLOBALS can’t be enabled for swapping’ Don’t send
<swap_size> parameter for ALG:DEF ’GLOBALS’

370 Error Messages Appendix B

Appendix C
Glossary

The following terms have special meaning when related to the HP E1419.

Algorithm In general, an algorithm is a tightly defined procedure
that performs a task. This manual, uses the term to
indicate a program executed within the HP E1419 that
implements a data acquisition and control algorithm.

Algorithm
Language

The algorithm programming language specific to the
HP E1419. This programming language is a subset of the
ANSI ’C’ language.

Application
Program

The program that runs in the VXIbus controller, either
embedded within the VXIbus mainframe, or external and
interfaced to the mainframe. The application program
typically sends SCPI commands to configure the
HP E1419, define its algorithms, then start the algorithms
running. Typically, once the HP E1419 is running
algorithms, the application need only "oversee" the
control application by monitoring the algorithms’ status.
During algorithm writing, debugging, and tuning, the
application program can retrieve comprehensive data
from running algorithms.

Buffer In this manual, a buffer is an area in RAM memory that
is allocated to temporarily hold:

Data input values that an algorithm will later access.
This is the Input Channel Buffer.

Data output values from an algorithm until these
values are sent to hardware output channels. This is
the Output Channel Buffer.

Data output values from an algorithm until these
values are read by your application program. This is
the First-In-First-Out or FIFO buffer.

A second copy of an array variable containing
updated values until it is "activated" by an update.
This is "double buffering".

A second version of a running algorithm until it is
"activated" by an update. This is only for algorithms
that are enabled for swapping. This is also "double
buffering".

Appendix C Glossary 371

Control
Processor

The Digital Signal Processor (DSP) chip that performs all
of the HP E1419’s internal hardware control functions as
well as performing the EU Conversion process.

DSP Same as Control Processor

EU Engineering Units

EU Conversion Engineering Unit Conversion: Converting binary A/D
readings (in units of A/D counts) into engineering units
of voltage, resistance, temperature, strain. These are the
"built in" conversions (see SENS:FUNC: ...). The
HP E1419 also provides access to custom EU
conversions (see SENS:FUNC:CUST in command
reference and "Creating and Loading Custom EU Tables"
in Chapter 3).

FIFO The First-In-First-OUT buffer that provides output
buffering for data sent from an algorithm to an
application program.

Flash or
Flash Memory

Non-volatile semiconductor memory used by the
HP E1419 to store its control firmware and calibration
constants

Scan List A list of up to 64 channels that is built by the HP E1419.
Channels referenced in algorithms are placed in the Scan
List as the algorithm is defined. This list will be scanned
each time the module is triggered.

SCP Signal Conditioning Plug-on: Small circuit boards that
plug onto the HP E1419’s main circuit board. Available
analog input SCPs can provide noise canceling filters,
signal amplifiers, signal attenuators, and strain bridge
completion. Analog output SCPs are available to provide
measurement excitation current, controlling voltage, and
controlling current. Digital SCPs are available to both
read and write digital states, read frequency and counts,
and output modulated pulse signals (FM and PWM).

Swapping This term applies to algorithms that are enabled to swap.
These algorithms can be exchanged with another of the
same name while the original is running. The "new"
algorithm becomes active after an update command is
sent. This "new" algorithm may again be swapped with
another, and so on. This capability allows changing
algorithm operation without stopping and leaving this and
perhaps other processes without control.

372 Glossary Appendix C

Terminal
Blocks

The screw-terminal blocks you connect your system field
wiring to. The terminal blocks are inside the Terminal
Module

Terminal
Module

The plastic encased module which contains the terminal
blocks you connect your field wiring to. The Terminal
Module then is plugged into the HP E1419’s front panel.

Update This is an intended change to an algorithm, algorithm
variable, or global variable that is initiated by one of the
commands ALG:SCALAR, ALG:ARRAY,
ALG:DEFINE, ALG:SCAN:RATIO, or ALG:STATE.
This change or "update" is considered to be pending until
an update command is received. Several updates can be
sent to the Update Queue, waiting for an update
command to cause them to take effect synchronously.
The update commands are ALG:UPDATE, and
ALG:UPD:CHANNEL.

Update Queue A list of scalar variable values, and/or buffer pointer
values (for arrays, and swapping algorithms) that is built
in response to updates (see Update). When an update
command is sent, scalar values and pointer values are
sent to their working locations.

User Function A function callable from the Algorithm Language in the
general form <function_name>(<expression>). These
user defined functions provide advanced mathematical
capability to the Algorithm Language

Appendix C Glossary 373

374 Glossary Appendix C

Appendix D
Wiring and Noise Reduction Methods

Separating Digital and Analog SCP Signals

Signals with very fast rise time can cause interference with nearby signal
paths. This is called cross-talk. Digital signals present this fast rise-time
situation. Digital I/O signal lines that are very close to analog input signal
lines can inject noise into them.

To minimize cross-talk you can maximize the distance between analog input
and digital I/O signal lines. Figure D-1 shows that by installing analog input
SCPs in positions 0 through 3, and analog output and digital I/O SCPs in
positions 4 through 7, you can keep these types of signals separated by the
width of the HP E1419 module. The signals are further isolated because
they remain separated on the connector module as well. Note that in Figure
D-1 , even though only 7 of the eight SCP positions are filled, the SCPs
present are not installed contiguously, but are arranged to provide this
digital/analog separation.

If you have to mix analog input and digital I/O SCPs on the same side, the
following suggestions will help provide quieter analog measurements.

• Use analog input SCPs that provide filtering on the mixed side.
• Route only high level analog signals to the mixed side.

Figure D-1 Separating Analog and Digital Siganls

Appendix D Wiring and Noise Reduction Methods 375

Recommended Wiring and Noise Reduction Techniques

Unshielded signal wiring is very common in Data Acquisition applications.
While this worked well for low speed integrating A/D measurements and/or
for measuring high level signals, it does not work for high speed sampling
A/Ds, particularly when measuring low level signals like thermocouples or
strain gage bridge outputs. Unshielded wiring will pick up environmental
noise, causing measurement errors. Shielded, twisted pair signal wiring,
although it is expensive, is required for these measurements unless an even
more expensive amplifier-at-the- signal-source or individual A/D at the
source is used.

Generally, the shield should be connected to ground at the DUT and left
open at the HP E1419. Floating DUTs or transducers are an exception.
Connect the shield to HP E1419 GND or GRD terminals for this case,
whichever gives the best performance. This will usually be the GND
terminal. A single point shield to ground connection is required to prevent
ground loops. This point should be as near to the noise source as possible
and this is usually at the DUT.

Wiring Checklist The following lists some recommended wiring techniques.

1. Use individually shielded, twisted-pair wiring for each channel.

2. Connect the shield of each wiring pair to the corresponding Guard
(G) terminal on the Terminal Module .

3. The Terminal Module is shipped with the Ground-Guard
(GND-GRD) shorting jumper installed for each channel. These may
be left installed or removed, dependent on the following conditions:

a. Grounded Transducer with shield connected to ground at the
transducer: Low frequency ground loops (DC and/or 50/60Hz)
can result if the shield is also grounded at the Terminal Module
end. To prevent this, remove the GND-GRD jumper for that
channel.

b. Floating Transducer with shield connected to the transducer
at the source: In this case, the best performance will most likely
be achieved by leaving the GND-GRD jumper in place.

4. In general, the GND-GRD jumper can be left in place unless it is
necessary to break low frequency (below 1 kHz) ground loops.

376 Wiring and Noise Reduction Methods Appendix D

HP E1419 Guard
Connections

The HP E1419 guard connection provides a 10 KΩ current limiting resistor
between the guard terminals (G) and E1419 chassis ground for each 8
channel SCP bank. This is a safety device for the case where the Device
Under Test (DUT) isn’t actually floating, the shield is connected to the DUT
and also connected to the HP E1419 guard terminal (G). The 10 KΩ
resistor limits the ground loop current, which has been known to burn out
shields. This also provides 20 KΩ isolation between shields between SCP
banks which helps isolate the noise source.

Common Mode
Voltage Limits

You must be very careful not to exceed the maximum common mode
voltage referenced to the card chassis ground of ±16 volts (±60 volts with
the HP E1513A Attenuator SCP). There is an exception to this when high
frequency (1 kHz - 20 kHz) common mode noise is present (see “HP E1419
Noise Rejection” below). Also, if the DUT is not grounded, then the shield
should be connected to the E1419 chassis ground.

When to Make
Shield Connections

It is not always possible to state positively the best shield connection for all
cases. Shield performance depends on the noise coupling mechanism which
is very difficult to determine. The above recommendations are usually the
best wiring method, but if feasible, experiment with shield connections to
determine which provides the best performance for your installation and
environment.

NOTE For a thorough, rigorous discussion of measurement noise, shielding, and
filtering, see “Noise Reduction Techniques in Electronic Systems” by
Henry W. Ott of Bell Laboratories, published by Wiley & Sons, ISBN
0-471-85068-3.

Noise Due to Inadequate Card Grounding

If either or both of the HP E1419 and HP E1482 (MXI Extender Modules)
are not securely screwed into the VXIbus Mainframe, noise can be
generated. Make sure that both screws (top and bottom) are screwed in tight.
If not, it is possible that CVT data could be more noisy than FIFO data
because the CVT is located in A24 space, the FIFO in A16 space; more
lines moving could cause noisier readings.

Appendix D Wiring and Noise Reduction Methods 377

HP E1419 Noise Rejection

See Figure D-2 for the following discussion.

Normal Mode Noise
(Enm)

This noise is actually present at the signal source and is a differential noise
(Hi to Lo). It is what is filtered out by the buffered filters on the HP E1502,
E1503, E1508, and E1509 SCPs.

Common Mode
Noise (Ecm)

This noise is common to both the Hi and Lo differential signal inputs. Low
frequency Ecm is very effectively rejected by a good differential
instrumentation amplifier, and it can be averaged out when measured
through the Direct Input SCP (HP E1501). However, high frequency Ecm is
rectified and generates an offset with the amplifier and filter SCPs (such as
HP E1502, HP E1503, HP E1508, and HP E1509). This is since these SCPs
have buffer-amplifiers on board and is a characteristic of amplifiers. The
best way to deal with this is to prevent the noise from getting into the
amplifier.

Keeping Common
Mode Noise out of

the Amplifier

Most common mode noise is about 60 Hz, so the differential amplifier
rejection is very good. The amplifier Common Mode Noise characteristics
are:

120 dB flat to 300 Hz, then 20 dB/octave rolloff

The HP E1419 amplifiers are selected for low gain error, offset, temperature
drift, and low power. These characteristics are generally incompatible with
good high frequency CMR performance. More expensive, high performance
amplifiers can solve this problem, but since they aren’t required for many
systems, HP elected to handle this with the High Frequency Common Mode
Filter option to the HP E1586A Remote Rack Panel (HP E1586 Option 001,
RF Filter) discussed below.

Shielded, twisted pair lead wire generally does a good job of keeping high
frequency common mode noise out of the amplifier, provided the shield is
connected to the HP E1419 chassis ground through a very low impedance.
(Not via the guard terminal - The HP E1419 guard terminal connection
shown in the HP E1419 User’s manual does not consider the high frequency
Ecm problem, and is there to limit the shield current and to allow the DUT
to float up to some DC common mode voltage subject to the maximum ±16
volt input specification limit.

This conflicts with the often recommended good practice of grounding the
shield at the signal source and only at that point to eliminate line frequency
ground loops, which can be high enough to burn up a shield. We

378 Wiring and Noise Reduction Methods Appendix D

recommend that you follow this practice, and if you see high frequency
common mode noise (or suspect it), tie the shield to the HP E1419 ground
through a 0.1 µF capacitor. At high frequencies, this drives the shield
voltage to 0 volts at the HP E1419 input. Due to inductive coupling to the
signal leads, the Ecm voltage on the signal leads is also driven to zero.

Reducing Common
Mode Rejection

Using Tri-Filar
Transformers

One HP E1413 customer determined that greater than 100 dB CMR to 10
MHz was required to get good thermocouple (TC) measurements in his test
environment. To accomplish this requires the use of tri-filar transformers
which are an option to the HP E1586A Remote Rack Terminal Panel. (This
also provides superior isothermal reference block performance for
thermocouple measurements.) This works by virtue of the inductance in the
shield connected winding presenting a significant impedance to high
frequency common mode noise and forcing all the noise voltage to be
dropped across the winding. The common mode noise at the input amplifier
side of the winding is forced to 0 volts by virtue of the low impedance
connection to the HP E1419 ground via the selectable short or parallel
combination of 1 kΩ and 0.1 µF. The short can’t be used in situations where
there is a very high common mode voltage, (DC and/or AC) that could
generate very large shield currents.

The tight coupling through the transformer windings into the signal Hi and
Low leads, forces the common mode noise at the input amplifier side of
those windings to 0 volts. This achieves the 110 dB to 10 MHz desired,
keeping the high frequency common mode noise out of the amplifier, thus
preventing the amplifier from rectifying this into an offset error.

Figure D-2 HF Common Mode Filters

Appendix D Wiring and Noise Reduction Methods 379

This effectively does the same thing that shielded, twisted pair cable does,
only better. It is especially effective if the shield connection to the
HP E1419 ground can’t be a very low impedance due to large DC and/or
low frequency common mode voltages.

The tri-filar transformers don’t limit the differential (normal mode) signal
bandwidth. Thus, removing the requirement for "slowly varying signal
voltages". The nature of the tri-filar transformer, or, more accurately,
common-mode inductor, is that it provides a fairly high impedance to
common mode signals, and a quite low impedance to differential mode
signals. The ratio of common-mode impedance to differential-mode
impedance for the transformer we use is ~ 3500:1. Thus, there is NO
differential mode bandwidth penalty incurred by using the tri-filar
transformers.

380 Wiring and Noise Reduction Methods Appendix D

Appendix E
Generating User Defined Functions

Introduction.

The HP E1419A Multifunction3OXV Measurement and Control Module has a
limited set of mathematical operations such as add, subtract, multiply, and
divide. Many control applications require functions such a square root for
calculating flow rate or a trigonometric function to correctly transition
motion of an actuator from a start to ending position. In order to represent a
sine wave or other transcendental functions, one could use a power series
expansion to approximate the function using a finite number of algebraic
expressions. Since the above mentioned operations can take from 1.5usec to
4usec for each floating point calculation, a complex waveform such as
sine(x) could take more than 100usec to get the desired result. A faster
solution is desirable and available.

The HP E1419A provides a solution to approximating such complex
waveforms by using a piece-wise linearization of virtually any complex
waveform. The technique is simple. The CD ROM supplied with your HP
E1419A contains the HP VEE program "fn_1419.vee" that builds user
defined functions and loads them into the HP E1419A. The VEE module
calls a ’C’ function (source code supplied) that actually calculates 128
Mx+B segments over a specified range of values for the desired function.
You supply the function; the program generates the segments in a table. The
"fn_1419.vee" program can be merged into your HP VEE application
program. Another HP VEE example program "eufn1419.vee" shows you
how to apply "fn_1419.vee". Up to 32 functions can be created for use in
algorithms. At runtime where the function is passed an ’x’ value, the time
to calculate the Mx+B function is approximately 18µsec.

The HP E1419A actually uses this technique to convert volts to temperature,
strain, etc. The accuracy of the approximation is really based upon how well
you select the range over which the table is built. For thermocouple
temperature conversion, the HP E1419A fixes the range to the lowest A/D
range(+/-64millivolts) so that small microvolt measurements yield the
proper resolution of the actual temperature for a non-linear transducer. In
addition, the HP E1419A permits you to create Custom Engineering Unit
conversion for your transducer so that when the voltage measurement is
actually made the EU conversion takes place(see SENS:FUNC:CUST).
Algorithms deal with the resulting floating point numbers generated during
the measurement phase and may require further complex mathematical
operations to achieve the desired result.

Appendix E Generating User Defined Functions 381

With some complex waveforms, you may actually want to break up the
waveform into several functions in order to get the desired accuracy. For
example, suppose you need to generate a square root function for both
voltage and strain calculations. The voltages are only going to range from 0
to +/-16volts, worst case. The strain measurements return numbers in
microstrain which range in the 1000’s. Trying to represent the square root
function over the entire range would severely impact the accuracy of the
approximation. Remember, the entire range is broken up into only 128
segments of Mx+B operations. If you want accuracy, you MUST limit the
range over which calculations are made. Many transcendental functions are
simply used as a scaling multiplier. For example, a sine wave function is
typically created over a range of 360 degrees or 2*PI radians. After which,
the function repeats itself. It’s a simple matter to make sure the ’x’ term is
scaled to this range before calculating the result. This concept should be
used almost exclusively to obtain the best results.

Haversine Example.

The following is an example of creating a haversine function (a sine wave
over the range of -PI/2 to PI/2). The resulting function represents a fairly
accurate approximation of this non-linear waveform when you limit the
range as indicated. Since the tables must be built upon binary
boundaries(i.e. .125, .25, .5, 1, 2, 4, etc.) and since PI/2 is a number greater
than 1 but less than 2, the next binary interval to include this range will be 2.
Another requirement for building the table is that the waveform range
MUST be centered around 0(i.e. symmetrical about the X-axis). If the
desired function is not defined on one side or the other of the Y-axis, then
the table is right or left shifted by the offset from X=0 and the table values
are calculated correctly, but the table is built as though it were centered
about the X-axis. For the most part, you can ignore these last couple of
sentences if it does not make sense to you. The only reason its brought up
here is that your accuracy may suffer the farther away from the X=0 point
you get unless you understand what resolution is available and how much
non-linearity is present in your waveform. We’ll talk about that in the
"Limitations" section, later.

Figure 1 shows the haversine function as stated above. This type of
waveform is typical of the kind of acceleration and deceleration one wants
when moving an object from one point to another. The desired beginning
point would be the location at -PI/2 and the ending point would be at PI/2.
With the desired range spread over +/- PI/2, the 128 segments are actually
divided over the range of +/- 2. Therefore, the 128 Mx+B line segments are
divided equally on both sides of X=0: 64 segments for 0..2 and 64 segments
for -2..0.

382 Generating User Defined Functions Appendix E

A typical use of this function would be to output an analog voltage or
current at each Scan Trigger of the HP E1419A and over the range of the
haversine. For example, suppose you wanted a new position of an analog
output to move from 1ma to 3ma over a period of 100msec. If your
TRIG:TIMER setting or your EXTernal trigger was set to 2msec, then you
would want to force 50 intervals over the range of the haversine. This can
be easily done by using a scalar variable to count the number of times the
algorithm has executed and to scale the variable value to the -PI/2 to PI/2
range. 3ma is multiplied times the custom function result over each interval
which will yield the shape of the haversine (.003*sin(x)+.001).

Try the "eufn1419.vee" example program and define some custom functions
to illustrate this discussion.

Table 1 shows some examples of the accuracy of the custom function with
various input values compared to an evaluation of the actual transcendental
function found in ’C’ or RMB. Please note that the Mx+B segments are
located on boundaries specified by 2/64 on each side of X=0. This means
that if you select the exact input value that was used for the beginning of
each segment, you WILL get exactly the calculated value of that function at
that point. Any point between segments will be an approximation
dependent upon the linearity of that segment. Also note that values of X = 2
and X = -2 will result in Y=infinity.

Figure 1 A Haversine Function

Appendix E Generating User Defined Functions 383

’C’ sin(-1.570798) -1.000000 ’HP E1419A’ sin(-1.570798) -0.999905

’C’ sin(-1.256639) -0.951057 ’HP E1419A’ sin(-1.256639) -0.950965

’C’ sin(-0.942479) -0.809018 ’HP E1419A’ sin(-0.942479) -0.808944

’C’ sin(-0.628319) -0.587786 ’HP E1419A’ sin(-0.628319) -0.587740

’C’ sin(-0.314160) -0.309017 ’HP E1419A’ sin(-0.314160) -0.308998

’C’ sin(0.000000) 0.000000 ’HP E1419A’ sin(0.000000) 0.000000

’C’ sin(0.314160) 0.309017 ’HP E1419A’ sin(0.314160) 0.308998

’C’ sin(0.628319) 0.587786 ’HP E1419A’ sin(0.628319) 0.587740

’C’ sin(0.942479) 0.809018 ’HP E1419A’ sin(0.942479) 0.808944

’C’ sin(1.256639) 0.951057 ’HP E1419A’ sin(1.256639) 0.950965

’C’ sin(1.570798) 1.000000 ’HP E1419A’ sin(1.570798) 0.999905

Table 1. ’C’ Sin(x) Vs. HP E1419A Haversine Function for Selected
Points.

Limitations.

As stated earlier, there are limitations to using this custom function
technique. These limitations are directly proportional to the non-linearity of
the desired waveform. For example, suppose you wanted to represent the
function X*X*X over a range of +/-1000. The resulting binary range would
be +/-1024, and the segments would be partitioned at 1024/64 intervals.
This means that every 16 units would yield an Mx+B calculation over that
segment. As long as you input numbers VERY close to those cardinal
points, you will get good results. Strictly speaking, you will get perfect
results if you only calculate at the cardinal points, which may be reasonable
for your application if you limit your input values to exactly those 128
points.

You may also shift the waveform anywhere along the X-axis, and
Build_table() will provide the necessary offset calculations to generate the
proper table. Be aware too that shifting the table out to greater magnitudes
of X may also impact the precision of your results dependent upon the
linearity of your waveform. Suffice it to say that you will get your best
results and it will be easiest for you to grasp what your doing if you stay
near the X=0 point since most of the results of your measurements will have
1e-6..16 values for volts.

One final note. You may see truncation errors in the fourth digit of your
results. This is because only 15 bits of your input value is sent to the
function. This occurs because the same technique used for Custom EU

384 Generating User Defined Functions Appendix E

conversion is used here, and the method assumes input values are from the
16 bit A/D (15 bits = sign bit). This is evident in Table 1 where the first and
last entries return ±0.9999 rather than ±1. For most applications this
accuracy should be more than adequate.

Appendix E Generating User Defined Functions 385

386 Generating User Defined Functions Appendix E

Index

(First_loop), determining first execution, 115
(FM), fixed width pulses at variable frequency, 71
(FM), variable frequency square-wave output, 71
(Important!), performing channel calibration, 72
(PWM), variable width pulses at fixed frequency, 70
*CAL?, how to use, 72
*RST

and power-on defaults, 53
4-20 mA, adding sense circuits for, 44

A

A common error to avoid, 120
A complete thermocouple measurement command
sequence, 65
A very simple first algorithm, 124
Abbreviated Commands, 182
ABORt subsystem, 189
abs(expression), 128
Access, bitfield, 131
Accessing I/O channels, 114
Accessing the E1419A’s resources, 113
Accessories

Rack Mount Terminal Panel, 45
Accuracy

DC Volts, 334
Sample timer, 333
Temperature, 335

Adding settling delay for specific channels, 106
Adding terminal module components, 44
Additive-expression:, 134
Additive-operator:, 134
ADDRess

MEM:VME:ADDR, 246
ADDRess?

MEM:VME:ADDR?, 246
After INIT, 53
ALG:DEFINE in the programming sequence, 121
ALG:DEFINE’s three data formats, 121
Algorithm definition, 75
Algorithm execution order, 120
Algorithm Language reference, 126
Algorithm language statement

writecvt(), 116
writefifo(), 117

Algorithm, A very simple first, 124
Algorithm, data acquisition, 125
Algorithm, exiting the, 128
Algorithm, process monitoring, 125
Algorithm, running the, 124
Algorithm, writing the, 124
Algorithm-definition:, 137
ALGorithm:FUNCtion:DEFine, 201
ALGorithm:OUTPut:DELay, 203
ALGorithm:OUTPut:DELay?, 204
ALGorithm:UPDate:CHANnel, 205
ALGorithm:UPDate:WINDow, 206
ALGorithm:UPDate:WINDow?, 207
ALGorithm:UPDate[:IMMediate], 204
ALGorithm[:EXPLicit]:ARRay, 191
ALGorithm[:EXPLicit]:ARRay?, 192
ALGorithm[:EXPLicit]:DEFine, 192
ALGorithm[:EXPLicit]:SCALar, 196
ALGorithm[:EXPLicit]:SCALar?, 197
ALGorithm[:EXPLicit]:SCAN:RATio, 197
ALGorithm[:EXPLicit]:SCAN:RATio?, 198
ALGorithm[:EXPLicit]:SIZe?, 199
ALGorithm[:EXPLicit]:TIMe?, 201
ALGorithm[:EXPLicit][:STATe], 199
ALGorithm[:EXPLicit][:STATe]?, 200
Algorithms

disabling, 87
enabling, 87

Algorithms, defining, 120
Algorithms, INITiating/Running, 81
Algorithms, non-control, 125
Algorithms, starting, 81
ALL?

DATA:FIFO:ALL?, 266
AMPLitude

OUTP:CURRent:AMPLitude, 249
OUTPut:CURRent:AMPLitude?, 250

An example using the operation group, 93
APERture

SENSe:FREQuency:APERture, 270
APERture?

SENSe:FREQuency:APERture?, 271
Arithmetic operators, 127

Index 387

Arm and trigger sources, 78
ARM subsystem, 208 - 210
ARM:SOURce, 209
ARM:SOURce?, 210
ARRay

ALGorithm[:EXPLicit]:ARRay, 191
ARRay?

ALGorithm[:EXPLicit]:ARRay?, 192
Assigning values, 138
Assignment operator, 127
Attaching and removing the terminal module, 43
Attaching the HP E1415 terminal module, 43
Attaching the terminal module, 41
Autoranging, more on, 104
Available Power for SCPs, 333

B

Before INIT, 53
Bit-number:, 134
Bitfield access, 131
BLOCK), continuously reading the FIFO (FIFO
mode, 84
Byte, enabling events to be reported in the status, 93
Byte, reading the status, 94

C

C language algorithms
defining, 74

CAL:CONF:RES, 212
CAL:CONF:VOLT, 213
CAL:SETup, 214
CAL:SETup?, 214
CAL:STORe, 215
CAL:TARE, 216
CAL:TARE and thermocouples, 100
CAL:TARE, resetting, 102
CAL:TARE:RESet, 218
CAL:TARE?, 218
CAL:VAL:RESistance, 219
CAL:VAL:VOLTage, 219
CAL:ZERO?, 220
CALibration subsystem, 211 - 221
Calibration, channel

*CAL?, 316
Calibration, control of, 19
Calling user defined functions, 118
Capability, maximum tare, 102
CAUTIONS

Loss of process control by algorithm, 189, 200, 310
Safe handling procedures, 15

Certification, 9
Changing an algorithm while it’s running, 122
Changing gains, 102
Changing gains or filters, 102
Changing timer interval while scanning, 313
CHANnel

ALGorithm:UPDate:CHANnel, 205
Channel calibration

 *CAL?, 316
Channels

defined input, 115
output, 57, 67, 115
SENSe:REFerence:CHANnels, 283
setting up analog input, 57
setting up digital input, 67

Channels, accessing I/O, 114
Channels, adding settling delay for specific, 106
Channels, input, 114
Channels, output, 114
Channels, special identifiers for, 127
Characteristics, settling, 104
Checking for problems, 105
CHECksum?

DIAG:CHECK?, 225
Clearing event registers, 96
Clearing the enable registers, 95
Coefficients, 86
Command

Abbreviated, 182
Implied, 183
Linking, 185
Separator, 182

Command Quick Reference, 326 - 332
Command Reference, Common

*CAL?, 316
*CLS, 317
*DMC, 317
*EMC, 317
*EMC?, 317
*ESE, 317
*ESE?, 318
*ESR?, 318
*GMC?, 318
*IDN?, 318
*LMC?, 319
*OPC, 319
*OPC?, 319
*PMC, 320
*RMC, 320
*RST, 320
*SRE, 321
*SRE?, 321

388 Index

*STB?, 321
*TRG, 321
*TST?, 322
*WAI, 325

Command Reference, SCPI, 188
ABORt subsystem, 189
ALGorithm:FUNCtion:DEFine, 201
ALGorithm:OUTPut:DELay, 203
ALGorithm:OUTPut:DELay?, 204
ALGorithm:UPDate:CHANnel, 205
ALGorithm:UPDate:WINDow, 206
ALGorithm:UPDate:WINDow?, 207
ALGorithm:UPDate[:IMMediate], 204
ALGorithm[:EXPLicit]:ARRay, 191
ALGorithm[:EXPLicit]:ARRay?, 192
ALGorithm[:EXPLicit]:DEFine, 192
ALGorithm[:EXPLicit]:SCALar, 196
ALGorithm[:EXPLicit]:SCALar?, 197
ALGorithm[:EXPLicit]:SCAN:RATio, 197
ALGorithm[:EXPLicit]:SCAN:RATio?, 198
ALGorithm[:EXPLicit]:SIZe?, 199
ALGorithm[:EXPLicit]:TIMe?, 201
ALGorithm[:EXPLicit][:STATe], 199
ALGorithm[:EXPLicit][:STATe]?, 200
ARM subsystem, 208 - 210
ARM:IMMediate, 209
ARM:SOURce, 209
ARM:SOURce?, 210
CALibration subsystem, 211 - 221
CALibration:CONFigure:RESistance, 212
CALibration:CONFigure:VOLTage, 213
CALibration:SETup, 214
CALibration:SETup?, 214
CALibration:STORe, 215
CALibration:TARE, 216
CALibration:TARE:RESet, 218
CALibration:TARE?, 218
CALibration:VALue:RESistance, 219
CALibration:VALue:VOLTage, 219
CALibration:ZERO?, 220
DIAGnostic subsystem, 222 - 230
DIAGnostic:CALibration:SETup[:MODE], 223
DIAGnostic:CALibration:SETup[:MODE]?, 223
DIAGnostic:CALibration:TARe:MODE, 224
DIAGnostic:CALibration:TARe:MODE?, 224
DIAGnostic:CHECksum?, 225
DIAGnostic:CUSTom:LINear, 225
DIAGnostic:CUSTom:PIECewise, 226
DIAGnostic:CUSTom:REFerence:TEMPerature, 226
DIAGnostic:IEEE, 227
DIAGnostic:IEEE?, 227
DIAGnostic:INTerrupt:LINe, 228

DIAGnostic:INTerrupt:LINe?, 228
DIAGnostic:OTDetect[:STATe], 228
DIAGnostic:OTDetect[:STATe]?, 229
DIAGnostic:QUERy:SCPREAD, 230
DIAGnostic:VERSion?, 230
FETCh?, 231
FETCh? subsystem, 231 - 232
FORMat subsystem, 233 - 235
FORMat:DATA, 233
FORMat:DATA?, 234
INITiate subsystem, 236
INITiate:IMMediate, 236
INP:THReshold:LEVel?, 244
INPut subsystem, 237 - 244
INPut:FILTer:LPASs:FREQuency?, 239
INPut:FILTer:LPASs:STATe, 240
INPut:FILTer:LPASs:STATe?, 240
INPut:GAIN, 241
INPut:GAIN?, 242
INPut:L:DEBounce:TIME, 237
INPut:LOW, 242
INPut:LOW?, 243
INPut:LPASs:FILTer:FREQuency, 238
INPut:POLarity, 243
INPut:POLarity?, 243
MEMory subsystem, 245 - 248
MEMory:VME:ADDRess, 246
MEMory:VME:ADDRess?, 246
MEMory:VME:SIZE, 246
MEMory:VME:SIZE?, 247
MEMory:VME:STATe, 247
MEMory:VME:STATe?, 248
OUTPut subsystem, 249 - 257
OUTPut:CURRent:AMPLitude, 249
OUTPut:CURRent:AMPLitude?, 250
OUTPut:CURRent:STATe, 251
OUTPut:CURRent:STATe?, 251
OUTPut:POLarity, 252
OUTPut:POLarity?, 252
OUTPut:SHUNt, 253
OUTPut:SHUNt?, 253
OUTPut:TTLTrg:SOURce, 254
OUTPut:TTLTrg:SOURce?, 254
OUTPut:TTLTrg :STATe, 255
OUTPut:TTLTrg :STATe?, 255
OUTPut:TYPE, 255
OUTPut:TYPE?, 256
OUTPut:VOLTage:AMPLitude, 256
OUTPut:VOLTage:AMPLitude?, 257
ROUTe subsystem, 258 - 259
ROUTe:SEQuence:DEFine?, 258
ROUTe:SEQuence:POINts?, 259

Index 389

SAMPle subsystem, 260 - 261
SAMPle:TIMer, 260
SAMPle:TIMer?, 260
SENSe subsystem, 262 - 289
SENSe:CHANnel:SETTling, 263
SENSe:CHANnel:SETTling?, 264
SENSe:DATA:COUN:HALF?, 267
SENSe:DATA:CVTable:RESet, 265
SENSe:DATA:CVTable?, 264
SENSe:DATA:FIFO:ALL?, 266
SENSe:DATA:FIFO:COUNt?, 266
SENSe:DATA:FIFO:HALF?, 267
SENSe:DATA:FIFO:MODE, 268
SENSe:DATA:FIFO:MODE?, 269
SENSe:DATA:FIFO:PART?, 269
SENSe:DATA:FIFO:RESet, 270
SENSe:FREQuency:APERture, 270
SENSe:FREQuency:APERture?, 271
SENSe:FUNC:CONDition, 271
SENSe:FUNCtion:CUSTom, 272
SENSe:FUNCtion:CUSTom:REFerence, 273
SENSe:FUNCtion:CUSTom:TCouple, 274
SENSe:FUNCtion:FREQuency, 275
SENSe:FUNCtion:RESistance, 275
SENSe:FUNCtion:STRain:FBEN, 277
SENSe:FUNCtion:STRain:FBP, 277
SENSe:FUNCtion:STRain:FPO, 277
SENSe:FUNCtion:STRain:HBEN, 277
SENSe:FUNCtion:STRain:QUAR, 277
SENSe:FUNCtion:STRainHPO:, 277
SENSe:FUNCtion:TEMPerature, 278
SENSe:FUNCtion:TOTalize, 280
SENSe:FUNCtion:VOLTage, 280
SENSe:REFerence, 281
SENSe:REFerence:CHANnels, 283
SENSe:REFerence:TEMPerature, 284
SENSe:STRain:EXCitation, 284
SENSe:STRain:EXCitation?, 285
SENSe:STRain:GFACtor, 285
SENSe:STRain:GFACtor?, 286
SENSe:STRain:POISson, 286
SENSe:STRain:POISson?, 287
SENSe:STRain:UNSTrained, 287
SENSe:STRain:UNSTrained?, 288
SENSe:TOTalize:RESet:MODE, 288
SENSe:TOTalize:RESet:MODE?, 289
SOURce subsystem, 290 - 295
SOURce:FM:STATe, 290
SOURce:FM:STATe?, 291
SOURce:FUNC[:SHAPe]:CONDition, 291
SOURce:FUNC[:SHAPe]:PULSe, 292
SOURce:FUNC[:SHAPe]:SQUare, 292

SOURce:PULM:STATe, 292
SOURce:PULM:STATe?, 293
SOURce:PULSe:PERiod, 293
SOURce:PULSe:PERiod?, 294
SOURce:PULSe:WIDTh, 294
SOURce:PULSe:WIDTh?, 294
STATus subsystem, 296 - 307
STATus:OPERation:CONDition?, 298
STATus:OPERation:ENABle, 299
STATus:OPERation:ENABle?, 300
STATus:OPERation:EVENt?, 300
STATus:OPERation:NTRansition, 300
STATus:OPERation:NTRansition?, 301
STATus:OPERation:PTRansition, 301
STATus:OPERation:PTRansition?, 302
STATus:PRESet, 302
STATus:QUEStionable:CONDition?, 303
STATus:QUEStionable:ENABle, 304
STATus:QUEStionable:ENABle?, 304
STATus:QUEStionable:EVENt?, 305
STATus:QUEStionable:NTRansition, 305
STATus:QUEStionable:NTRansition?, 306
STATus:QUEStionable:PTRansition, 306
STATus:QUEStionable:PTRansition?, 307
SYSTem subsystem, 308 - 309
SYSTem:CTYPe?, 308
SYSTem:ERRor?, 308
SYSTem:VERSion?, 309
TRIGger subsystem, 310 - 315
TRIGger:COUNt, 312
TRIGger:COUNt?, 312
TRIGger:IMMediate, 313
TRIGger:SOURce, 313
TRIGger:SOURce?, 314
TRIGger:TIMer, 314
TRIGger:TIMer?, 315

Command sequences, defined, 21
Comment lines, 141
Comments:, 138
Common Command Format, 182
Common mode noise, 378
Common mode rejection, 334
Common mode voltage

Maximum, 334
Common mode voltage limits, 377
Comparison operators, 127
Compensating for system offsets, 100
Compensation, thermocouple reference temperature,
64
Components, adding terminal module, 44
Compound-statement:, 136
CONDition

390 Index

SENSe:FUNC:CONDition, 271
SOURce:FUNC[:SHAPe]:CONDition, 291
STAT:OPER:CONDition?, 298

CONDition?
STAT:QUES:CONDition?, 303

Conditional constructs, 128
Conditional execution, 139
Configuring programmable analog SCP parameters, 57
Configuring the enable registers, 93
Configuring the HP E1415, 13
Configuring the Reference Jumpers, 32
Configuring the transition filters, 93
Conformity, declaration, 11
Connection

recommended, 34
signals to channels, 34

Connections
Guard, 377

Considerations, special, 102
Constant:, decimal, 133
Constant:, hexadecimal, 133
Constant:, octal, 133
Constructs, conditional, 128
Continuous Mode, 313
Continuously reading the FIFO (FIFO mode
BLOCK), 84
Control, program flow, 128
Conversion, EU, 372
Conversion, linking channels to EU, 59
Conversions, custom EU, 67
Conversions, custom reference temperature EU, 99
Conversions, custom thermocouple EU, 99
COUNt?

SENS:DATA:FIFO:COUNt?, 266
Counter, setting the trigger, 80
Creating and loading custom EU conversion tables, 98
Creating conversion tables, 100
CTYPe?

SYST:CTYPe?, 308
Current Value Table

SENSe:DATA:CVTable?, 264
CUSTom

SENS:FUNC:CUSTom, 272
Custom EU conversion tables

creating, 98
loading, 98

Custom EU conversions, 67
Custom EU operation, 99
Custom EU tables, 99
Custom reference temperature EU conversions, 99
Custom thermocouple EU conversions, 99
CVT

SENSe:DATA:CVTable?, 264
CVT elements, reading, 117
CVT elements, writing value to, 116
CVT, sending data to, 116

D

DATA
FORMat:DATA, 233
FORMat:DATA?, 234

Data acquisition algorithm, 125
Data structures, 130
Data types, 129
Data, retrieving algorithm, 83
DATA:FIFO:ALL?, 266
Decimal constant:, 133
Declaration initialization, 132
Declaration of conformity, 11
Declaration:, 136
Declarations:, 136
Declarator:, 135
Declaring variables, 138
Defaults

power-on and *RST, 53
DEFine

ALGorithm:FUNCtion:DEFine, 201
ALGorithm[:EXPLicit]:DEFine, 192
ROUT:SEQ:DEF?, 258

Defined input and output channels, 115
Defining algorithms, 120
Defining an algorithm for swapping, 122
Defining and accessing global variables, 115
Defining C language algorithms, 74
Defining data storage, 76
DELay

ALGorithm:OUTPut:DELay, 203
DELay?

ALGorithm:OUTPut:DELay?, 204
Detecting open transducers, 103
Determining an algorithm’s size, 123
Determining first execution (First_loop), 115
Determining model

SCPI programming, 318
DIAG:CHECK?, 225
DIAG:CUST:REF:TEMP, 226
DIAG:INT:LINe, 228
DIAG:INT:LINe?, 228
DIAG:OTD[:STATe], 228
DIAG:OTD[:STATe]?, 229
DIAG:VERSion?, 230
DIAGnostic

DIAGnostic:CALibration:SETup[:MODE], 223

Index 391

DIAGnostic:CALibration:SETup[:MODE]?, 223
DIAGnostic:CALibration:TARe:MODE, 224
DIAGnostic:CALibration:TARe:MODE?, 224
DIAGnostic:CUSTom:LINear, 225
DIAGnostic:CUSTom:PIECewise, 226
DIAGnostic:IEEE, 227
DIAGnostic:IEEE?, 227
DIAGnostic:QUERy:SCPREAD, 230

DIAGnostic:CALibration:SETup[:MODE], 223
DIAGnostic:CALibration:SETup[:MODE]?, 223
DIAGnostic:CALibration:TARe:MODE, 224
DIAGnostic:CALibration:TARe:MODE?, 224
DIAGnostic:CUSTom:LINear, 225
DIAGnostic:CUSTom:PIECewise, 226
DIAGnostic:IEEE, 227
DIAGnostic:IEEE?, 227
DIAGnostic:OTDetect, 103
DIAGnostic:QUERy:SCPREAD, 230
Digital evaluation of type float, 131
Directly, reading status groups, 95
Disabling flash memory access (optional), 19
Disabling the input protect feature (optional), 19
Documentation history, 10
Does, what *CAL?, 72
Drivers; instrument, 21
DSP, 372

E

ENABle
STAT:OPER:ENABle, 299
STAT:QUES:ENABle, 304

ENABle?
STAT:OPER:ENABle?, 300
STAT:QUES:ENABle?, 304

Enabling and disabling algorithms, 87
Enabling events to be reported in the status byte, 93
Environment, the algorithm execution, 112
Equality-expression:, 135
Equality-operator:, 135
Error Messages, 363 - 370

Self Test, 366
ERRor?

SYST:ERRor?, 308
EU, 372
EU Conversion, 372
EVENt?

STAT:OPER:EVENt?, 300
STAT:QUES:EVENt?, 305

Example command sequence, 88
Example language usage, 111
Example programs, about, 21

Examples, operation status group, 94
Examples, questionable data group, 93
Examples, standard event group, 94
EXCitation

SENSe:STRain:EXCitation, 284
SENSe:STRain:EXCitation?, 285

Executing the programming model, 53
Execution, conditional, 139
Exiting the algorithm, 128
Expression-statement:, 136
Expression:, 135

F

Faceplate connector pin-signal lists, 27
FIFO, reading values from the, 117
FIFO, sending data to, 116
FIFO, time relationship of readings in, 117
FIFO, writing values to, 117
Filters, 102
Filters, adding circuits to terminal module, 44
Filters, configuring the transition, 93
Fixed width pulses at variable frequency (FM), 71
Fixing the problem, 105
Flash Memory, 372
Flash memory access, disabling, 19
Flash memory limited lifetime, 215
Floating point as integer, 131
FM:STATe

SOURce:FM:STATe, 290
FM:STATe?

SOURce:FM:STATe?, 291
Format

Common Command, 182
SCPI Command, 182

Format, specifying the data, 76
FORMat:DATA, 233
FORMat:DATA?, 234
Formats, ALG:DEFINE’s three data, 121
FREQuency

INPut:FILT:FREQ, 238
SENSe:FUNCtion:FREQuency, 275

Frequency function, 68
Frequency, setting algorithm execution, 88
Frequency, setting filter cutoff, 58
FREQuency?

INP:FILT:FREQ?, 239
Function, frequency, 68
Function, setting input, 68
Function, static state (CONDition), 68, 70
Function, the main, 112
Function, totalizer, 68

392 Index

Functions and statements, intrinsic
abs(expression), 128
interrupt(), 117, 128
max(expression1,expression2), 128
min(expression1,expression2), 128
writeboth(expression,cvt_element), 128
writecvt(expression,cvt_element), 116, 128
writefifo(expression), 117, 128

Functions, calling user defined, 118
Functions, linking output channels to, 67
Functions, setting output, 69
Functions:, 128

G

GAIN
channel, 316
INPut:GAIN, 241

GAIN?
INP:GAIN?, 242

Gains, setting SCP, 57
GFACtor

SENSe:STRain:GFACtor, 285
SENSe:STRain:GFACtor?, 286

Global variable definition, 74
Global variables, 132

accessing, 115
defining, 115

Glossary, 371 - 374
Grounding

Noise due to inadequate, 377
Group, an example using the operation, 93
Guard connections, 377

H

HALF?
SENS:DATA:FIFO:COUNt:HALF?, 267
SENS:DATA:FIFO:HALF?, 267

Hexadecimal constant:, 133
HINTS

for quiet measurements, 34
Read chapter 3 before chapter 4, 109

How to use *CAL?, 72
HP E1415, configuring the, 13
HP E1419A background operation, 96

I

Identifier:, 133
Identifiers, 126
IEEE +/- INF, 234

IMMediate
ALGorithm:UPDate[:IMMediate], 204
ARM:IMMediate, 209
INIT:IMM, 236
TRIG:IMMediate, 313

Impedance, input, 334
Implied Commands, 183
IMPORTANT!

Do use CAL:TARE for copper TC wiring, 100
Don’t use CAL:TARE for thermocouple wiring, 100

INF, IEEE, 234
INIT

after, 53
before, 53

Init-declarator-list:, 135
Init-declarator:, 135
INIT:IMM, 236
Initialization, declaration, 132
Initializing variables, 116
INITiate subsystem, 236
INITiating/Running algorithms, 81
INP:FILT:FREQ?, 239
INP:FILT:LPAS:STAT, 240
INP:FILT:LPAS:STAT?, 240
INP:GAIN?, 242
Input channels, 114
Input impedance, 334
Input protect feature, disabling, 19
INPut subsystem, 237 - 244
Input voltage, maximum, 334
INPut:DEB:TIME, 237
INPut:FILT:FREQ, 238
INPut:GAIN, 241
INPut:LOW, 242
INPut:LOW?, 243
INPut:POLarity, 243
INPut:POLarity?, 243
INPut:THReshold:LEVel?, 244
Inputs, setting up digital, 67
Installing signal conditioning plug-ons, 15
Instrument drivers, 21
Integer evaluation of type float, 131
Integer values from type float, 131
Interrupt function, 117
Interrupt level, setting NOTE, 13
interrupt(), 117, 128
Interrupts

updating the status system, 97
VXI, 97

Intrinsic functions and statements
abs(expression), 128
interrupt(), 117, 128

Index 393

max(expression1,expression2), 128
min(expression1,expression2), 128
writeboth(expression,cvt_element), 128
writecvt(expression,cvt_element), 116, 128
writefifo(expression), 117, 128

Intrinsic-statement:, 136
Isothermal reference measurement, NOTE, 26

K

Keywords, special HP E1419A reserved, 126
Keywords, standard reserved, 126

L

Language syntax summary, 133
Language, overview of the algorithm, 110
Layout

Terminal Module, 30
LEVel?

INPut:THReshold, 244
Lifetime limitation, Flash memory, 215
Limits

Common mode voltage, 377
LINe

DIAG:INT:LINe, 228
LINe?

DIAG:INT:LINe?, 228
Lines, comment, 141
Linking channels to EU conversion, 59
Linking Commands, 185
Linking output channels to functions, 67
Linking resistance measurements, 61
Linking strain measurements, 66
Linking temperature measurements, 62
Linking voltage measurements, 60
Lists

Faceplate connector pin-signal , 27
Logical operators, 127
Logical-AND-expression:, 135
LOW

INPut:LOW, 242
INPut:LOW?, 243

Low-noise measurements, HINTS, 34

M

max(expression1,expression2), 128
Maximum

Common mode voltage, 334
Input voltage, 334
Tare cal offset, 334

Maximum tare capability, 102
Measurement

Ranges, 333
Resolution, 333

Measurements
terminal block considerations for TC, 33

Measurements, linking resistance, 61
Measurements, linking strain, 66
Measurements, linking temperature, 62
Measurements, linking voltage, 60
Measurements, reference measurement before
thermocouple, 65
Measurements, thermocouple, 63
Measuring the reference temperature, 64
Meaurement

Accuracy DC Volts, 334
MEM:VME:ADDR, 246
MEM:VME:ADDR?, 246
MEM:VME:SIZE, 246
MEM:VME:SIZE?, 247
MEM:VME:STATe, 247
MEM:VME:STATe?, 248
Messages, error, 363 - 370
min(expression1,expression2), 128
MODE

SENS:DATA:FIFO:MODE, 268
SENSe:TOTalize:RESet:MODE, 288

Mode, selecting the FIFO, 77
MODE?

SENS:DATA:FIFO:MODE?, 269
SENSe:TOTalize:RESet:MODE?, 289

Mode?, which FIFO, 84
Model, determining

SCPI programming, 318
Modifier, the static, 129
Modifying running algorithm variables, 86
Modifying the terminal module circuit, 44
Module

SCPs and Terminal, 28
Modules

Terminal, 28
More on auto ranging, 104
Multiplicative-expression:, 134
Multiplicative-operator:, 134

N

NaN, 234
Noise

Common mode, 378
Normal mode, 378

Noise due to inadequate grounding, 377

394 Index

Noise reduction with amplifier SCPs, NOTE, 106
Noise reduction, wiring techniques, 376
Noise Rejection, 378
Noisy measurements

Quieting, 34
Non-Control algorithms, 125
Normal mode noise, 378
Not-a-Number, 234
NOTES

*CAL? and CAL:TARE turns off then on OTD, 229
*RST effect on custom EU tables, 99
*TST? sets default ASC,7 data format, 234
+ & - overvoltage return format from FIFO, 266, 268,

270
ALG:SCAN:RATIO vs. ALG:UPD, 198
ALG:SIZE? return for undefined algorithm, 199
ALG:STATE effective after ALG:UPDATE, 87
ALG:STATE effective only after ALG:UPD, 199
ALG:TIME? return for undefined algorithm, 201
Algorithm Language case sensitivity, 127
Algorithm Language reserved keywords, 126
Algorithm source string terminated with null, 121
Algorithm source string terminates with null, 194
Algorithm swapping limitations, 196
Algorithm Swapping restrictions, 123
Algorithm variable declaration and assignment, 115
Amplifier SCPs can reduce measurement noise, 106
BASIC’s vs. ’C’s "is equal to" symbol, 139
Bitfield access ’C’ vs. Algorithm Language, 131
Cannot declare channel ID as variable, 127
Combining SCPI commands, 186
CVT contents after *RST, 265
Decimal constants can be floating or integer, 133
Default (*RST) Engineering Conversion, 60
Define user function before algorithm calls , 118
Do not CAL:TARE thermocouple wiring, 216
Do use CAL:TARE for copper in TC wiring, 100
Do use CAL:TARE for copper TC wiring, 216
Don’t use CAL:TARE for thermocouple wiring, 100
Flash memory limited lifetime, 102, 215
Isothermal reference measurements, 26
MEM subsystem vs. command module model, 245
MEM subsystem vs. TRIG and INIT sequence, 245
MEM system vs TRIG and INIT sequence, 232
Memory required by an algorithm, 122
Number of updates vs. ALG:UPD:WINDOW, 191,

196, 207
Open transducer detect restrictions, 103
OUTP:CURR:AMPL command, 59
OUTP:CURR:AMPL for resistance measurements,

249
OUTP:VOLT:AMPL command, 59

Reference to noise reduction literature, 377
Resistance temperature measurements, 62
Saving time when doing channel calibration, 73
Selecting manual range vs. SCP gains, 60
Setting the interrupt level, 13
Settings conflict, ARM:SOUR vs TRIG:SOUR, 208,

313
Thermocouple reference temperature usage, 281, 284
TRIGger:SOURce vs. ARM:SOURce, 79 - 80
Warmup before executing *TST?, 367
When algorithm variables are initialized, 132

NTRansition
STAT:OPER:NTRansition, 300
STAT:QUES:NTRansition, 305

NTRansition?
STAT:OPER:NTRansition?, 301
STAT:QUES:NTRansition?, 306

O

Octal constant:, 133
Offset

A/D, 214, 316
channel, 214, 316

Offsets, compensating for system, 100
Offsets, residual sensor, 101
Offsets, system wiring, 100
Operating model, 52
Operating sequence, 118
Operation, 72, 101
Operation and restrictions, 72
Operation status group examples, 94
Operation, custom EU, 99
Operation, HP E1419A background, 96
Operation, standard EU, 98
Operator, assignment, 127
Operator, unary arithmetic, 139
Operator, unary logical, 127
Operators, 127
Operators, arithmetic, 127
Operators, comparison, 127
Operators, logical, 127
Operators, the arithmetic, 139
Operators, the comparison, 139
Operators, the logical, 139
Operators, unary, 127
Option A3F, 45
Order, algorithm execution, 120
OTD restrictions, NOTE, 103
OTDetect, DIAGnostic:OTDetect, 103
OUTP:CURRent:AMPLitude, 249
OUTP:CURRent:AMPLitude?, 250

Index 395

OUTP:SHUNt, 253
OUTP:SHUNt?, 253
OUTP:TTLT :STATe, 255
OUTP:TTLT :STATe?, 255
Output channels, 114
OUTPut subsystem, 249 - 257
OUTPut:CURRent:STATe, 251
OUTPut:CURRent:STATe?, 251
OUTPut:POLarity, 252
OUTPut:POLarity?, 252
OUTPut:TTLTrg:SOURce, 254
OUTPut:TTLTrg:SOURce?, 254
OUTPut:TYPE, 255
OUTPut:TYPE?, 256
OUTPut:VOLTage:AMPLitude, 256
OUTPut:VOLTage:AMPLitude?, 257
Outputs, setting up digital, 68
Outputting trigger signals, 81
OVER), reading the latest FIFO values (FIFO mode,
86
Overall program structure, 142
Overall sequence, 118
Overloads, unexpected channel, 102
Overview of the algorithm language, 110

P

Parameter data and returned value types, 187
Parameters, configuring programmable analog SCP,
57
PART?

SENS:DATA:FIFO:PART?, 269
Performing channel calibration (Important!), 72
PERiod

SOURce:PULSe:PERiod, 293
PERiod?

SOURce:PULSe:PERiod?, 294
Planning

grouping channels to signal conditioning, 23
planning wiring layout, 23
sense vs. output SCPs, 25
thermocouple wiring, 26

Plug-ons, installing signal conditioning, 15
Points

ROUT:SEQ:POINts?, 259
POISson

SENSe:STRain:POISson, 286
SENSe:STRain:POISson?, 287

POLarity
INPut:POLarity, 243
OUTPut:POLarity, 252

Polarity, setting input, 67

Polarity, setting output, 69
POLarity?

INPut:POLarity?, 243
OUTPut:POLarity?, 252

Power Available for SCPs, 333
Power-on and *RST defaults, 53
Pre-setting algorithm variables, 75
PRESet

STAT:PRESet, 302
Primary-expression:, 133
Problem, fixing the, 105
Problems, checking for, 105
Process monitoring algorithm, 125
Program flow control, 128
Program structure and syntax, 138
Programming model

executing the, 53
Programming the trigger timer, 80
PTRansition

STAT:OPER:PTRansition, 301
STAT:QUES:PTRansition, 306

PTRansition?
STAT:OPER:PTRansition?, 302
STAT:QUES:PTRansition?, 307

PULSe
SOURce:FUNC[:SHAPe]:PULSe, 292

Q

Questionable data group examples, 93
Quick Reference, Command, 326 - 332
Quiet measurements, HINTS, 34
Quieter readings with amplifier SCPs, NOTE, 106

R

Rack Mount Terminal Panel Accessories, 45
Ranges, measurement, 333
RATio

ALGorithm[:EXPLicit]:SCAN:RATio, 197
RATio?

ALGorithm[:EXPLicit]:SCAN:RATio?, 198
Re-Execute *CAL? when:, 73
Reading algorithm variables, 83
Reading condition registers, 96
Reading CVT elements, 117
Reading event registers, 96
Reading status groups directly, 95
Reading the latest FIFO values (FIFO mode OVER),
86
Reading the status byte, 94
Reading values from the FIFO, 117

396 Index

Recommended measurement connections, 34
REFerence

SENS:FUNC:CUST:REF, 273
SENS:REFerence, 281

Reference Jumpers
configuring the, 32

Reference junction, 32
Reference measurement before thermocouple
measurements, 65
Reference temperature measurement, NOTE, 26
Reference temperature sensing, 31
Reference temperature sensing with the HP E1415, 31
Reference, Algorithm language, 126
Register, the status byte group’s enable, 95
Registers, clearing event, 96
Registers, clearing the enable, 95
Registers, configuring the enable, 93
Registers, reading condition, 96
Registers, reading event, 96
Rejection

Noise, 378
Rejection, common mode, 334
Relational-expression:, 134
Relational-operator:, 135
Removing the HP E1415 terminal module, 43
RESet

*RST, 320
SENS:DATA:CVT:RESet, 265
SENS:DATA:FIFO:RESet, 270

Resetting CAL:TARE, 102
Residual sensor offsets, 101
RESistance

CAL:CONF:RES, 212
CAL:VAL:RESistance, 219
SENS:FUNC:RESistance, 275

Resolution, measurement, 333
Resources, accessing the E1419A’s, 113
Restrictions, 72
Retrieving Algorithm Data, 83
ROUT:SEQ:DEF?, 258
ROUT:SEQ:POINts?, 259
ROUTe subsystem, 258 - 259
RTD and thermistor measurements, 62
Running the algorithm, 124
Running, changing an algorithm while it’s, 122

S

Safe Handling, static discharge CAUTION, 15
SAMP:TIMer, 260
SAMP:TIMer?, 260
SAMPle subsystem, 260 - 261

sample timer, accuracy, 333
SCALar

ALGorithm[:EXPLicit]:SCALar, 196
SCALar?

ALGorithm[:EXPLicit]:SCALar?, 197
SCP, 372

grouping channels to signal conditioning, 23
sense vs. output SCPs, 25

SCP, Power Available, 333
SCP, setting the HP E1505 current source, 58
SCPI commands, 177

DIAGnostic:OTDetect, 103
Format, 182

SCPs and Terminal Module, 28
Selecting the FIFO mode, 77
Selecting the trigger source, 78
Selecting trigger timer arm source, 79
Selection-statement:, 136
Self test

and C-SCPI for MS-DOS (R), 322
how to read results, 322

Self Test, error messages, 366
Sending Data to the CVT and FIFO, 116
SENS:DATA:CVT:RESet, 265
SENS:DATA:FIFO:COUNt:HALF?, 267
SENS:DATA:FIFO:COUNt?, 266
SENS:DATA:FIFO:HALF?, 267
SENS:DATA:FIFO:MODE, 268
SENS:DATA:FIFO:MODE?, 269
SENS:DATA:FIFO:PART?, 269
SENS:DATA:FIFO:RESet, 270
SENS:FUNC:CUST:REF, 273
SENS:FUNC:CUST:TC, 274
SENS:FUNC:RESistance, 275
SENS:FUNC:STRain, 277
SENS:FUNC:TEMPerature, 278
SENS:FUNC:VOLTage, 280
SENS:REF:TEMPerature, 284
SENS:REFerence, 281
SENSe subsystem, 262 - 289
SENSe:CHANnel:SETTling, 263
SENSe:CHANnel:SETTling?, 264
SENSe:DATA:CVTable?, 264
SENSe:FREQuency:APERture, 270
SENSe:FREQuency:APERture?, 271
SENSe:FUNC:CONDition, 271
SENSe:FUNC:CUSTom, 272
SENSe:FUNCtion:FREQuency, 275
SENSe:FUNCtion:TOTalize, 280
SENSe:REFerence:CHANnels, 283
SENSe:STRain:EXCitation, 284
SENSe:STRain:EXCitation?, 285

Index 397

SENSe:STRain:GFACtor, 285
SENSe:STRain:GFACtor?, 286
SENSe:STRain:POISson, 286
SENSe:STRain:POISson?, 287
SENSe:STRain:UNSTrained, 287
SENSe:STRain:UNSTrained?, 288
SENSe:TOTalize:RESet:MODE, 288
SENSe:TOTalize:RESet:MODE?, 289
Sensing

Reference temperature with the HP E1415, 31
Sensing 4-20 mA, 44
Separator, command, 182
Sequence, A complete thermocouple measurement
command, 65
Sequence, ALG:DEFINE in the programming, 121
Sequence, example command, 88
Sequence, operating, 118
Sequence, overall, 118
Sequence, the operating, 82
Setting algorithm execution frequency, 88
Setting filter cutoff frequency, 58
Setting input function, 68
Setting input polarity, 67
Setting output drive type, 69
Setting output functions, 69
Setting output polarity, 69
Setting SCP gains, 57
Setting the HP E1505 current source SCP, 58
Setting the HP E1511 strain bridge SCP excitation
voltage, 59
Setting the logical address switch, 14
Setting the trigger counter, 80
Setting up analog input and output channels, 57
Setting up digital input and output channels, 67
Setting up digital inputs, 67
Setting up digital outputs, 68
Setting up the trigger system, 78
Settings conflict

ARM:SOUR vs TRIG:SOUR, 208, 313
SETTling

SENSe:CHANnel:SETTling, 263
Settling characteristics, 104
SETTling?

SENSe:CHANnel:SETTling?, 264
SETup

CAL:SETup, 214
CAL:SETup?, 214

Shield Connections
When to make, 377

SHUNt
OUTP:SHUNt, 253

OUTPut:SHUNt?, 253
Signal, connection to channels, 34
Signals, outputting trigger, 81
SIZE

MEM:VME:SIZE, 246
Size, determining an algorithm’s, 123
SIZe?

ALGorithm[:EXPLicit]:SIZe?, 199
MEM:VME:SIZE?, 247

SOURce
ARM:SOURce, 209
ARM:SOURce?, 210
OUTPut:TTLTrg:SOURce, 254
TRIG:SOURce, 313

SOURce subsystem, 290 - 295
Source, selecting the trigger, 78
Source, selecting trigger timer arm, 79
SOURce:FM:STATe, 290
SOURce:FM:STATe?, 291
SOURce:FUNC[:SHAPe]:CONDition, 291
SOURce:FUNC[:SHAPe]:PULSe, 292
SOURce:FUNC[:SHAPe]:SQUare, 292
SOURce:PULM:STATe, 292
SOURce:PULM:STATe?, 293
SOURce:PULSe:PERiod, 293
SOURce:PULSe:PERiod?, 294
SOURce:PULSe:WIDTh, 294
SOURce:PULSe:WIDTh?, 294
SOURce?

TRIG:SOURce?, 314
Sources

arm, 78
trigger, 78

Special considerations, 102
Special HP E1419A reserved keywords, 126
Special identifiers for channels, 127
Specifications, 333 - 362
Specifying the data format, 76
SQUare

SOURce:FUNC[:SHAPe]:SQUare, 292
Standard Commands for Programmable Instruments,
SCPI, 188
Standard EU operation, 98
Standard event group examples, 94
Standard reserved keywords, 126
Starting algorithms, 81
STAT:OPER:CONDition?, 298
STAT:OPER:ENABle, 299
STAT:OPER:ENABle?, 300
STAT:OPER:EVENt?, 300
STAT:OPER:NTRansition, 300
STAT:OPER:NTRansition?, 301

398 Index

STAT:OPER:PTRansition, 301
STAT:OPER:PTRansition?, 302
STAT:PRESet, 302
STAT:QUES:CONDition?, 303
STAT:QUES:ENABle, 304
STAT:QUES:ENABle?, 304
STAT:QUES:EVENt?, 305
STAT:QUES:NTRansition, 305
STAT:QUES:NTRansition?, 306
STAT:QUES:PTRansition, 306
STAT:QUES:PTRansition?, 307
STATe

ALGorithm[:EXPLicit][:STATe], 199
DIAG:OTD[:STATe], 228
DIAG:OTD[:STATe]?, 229
INP:FILT:LPAS:STATe, 240
INP:FILT:LPAS:STATe?, 240
MEM:VME:STATe, 247
MEM:VME:STATe?, 248
OUTPut:CURRent:STATe, 251
OUTPut:CURRent:STATe?, 251
SOURce:PULM:STATe, 292

STATe?
ALGorithm[:EXPLicit][:STATe]?, 200
SOURce:PULM:STATe?, 293

Statement, algorithm language
writecvt(), 116
writefifo(), 117

Statement-list:, 136
Statement:, 136
Statements and functions, intrinsic

abs(expression), 128
interrupt(), 117, 128
max(expression1,expression2), 128
min(expression1,expression2), 128

writeboth(expression,cvt_element), 128
writecvt(expression,cvt_element), 116, 128
writefifo(expression), 117, 128

Statements:, 128
Static discharge safe handling, CAUTION, 15
Static state (CONDition) function, 68, 70
STATus subsystem, 296 - 307
Storage, defining data, 76
STORe

CAL:STORe, 215
STRain

SENS:FUNC:STRain, 277
Structure, overall program, 142
Structures, data, 130
Sub subsystem, 222 - 235, 245 - 248
Subsystem

ABORT, 189
ARM, 208 - 210
CALibration, 211 - 221
DIAGnostic, 222 - 230
FETCh?, 231 - 232
FORMat, 233 - 235
INITiate, 236
INPut, 237 - 244
MEMory, 245 - 248
OUTPut, 249 - 257
ROUTe, 258 - 259
SAMPle, 260 - 261
SENSe, 262 - 289
SOURce, 290 - 295
STATus, 296 - 307
SYSTem, 308 - 309
TRIGger, 310 - 315

Summary, 100
Summary, language syntax, 133

Supplying the reference temperature, 65
Swapping, defining an algorithm for, 122
Switch, setting the logical address, 14
Symbols, the operations, 139
Syntax, Variable Command, 183
SYST:CTYPe?, 308
SYST:ERRor?, 308
SYST:VERSion?, 309
SYSTem subsystem, 308 - 309
System wiring offsets, 100
System, setting up the trigger, 78
System, using the status, 90

T

Tables, creating conversion, 100
Tables, custom EU, 99

TARE
CAL:TARE:RESet, 218
CAL:TARE?, 218

Tare cal offset, maximum, 334

Index 399

TARE?
CAL:TARE, 216

TCouple
SENS:FUNC:CUST:TC, 274

Techniques
Wiring and noise reduction, 376

TEMPerature
DIAG:CUST:REF:TEMP, 226
SENS:FUNC:TEMPerature, 278
SENS:REF:TEMPerature, 284

Temperature accuracy, 335
Temperature, measuring the reference, 64
Temperature, supplying the reference, 65
Terminal block considerations for TC measurements,
33
Terminal Blocks, 373
Terminal Module, 373

Attaching and removing the HP E1415, 43
Attaching the HP E1415, 43
Removing the HP E1415, 43
Wiring and attaching the, 41

Terminal Module Layout, 30
Terminal module wiring maps, 45
Terminal modules, 28
The algorithm execution environment, 112
The arithmetic operators, 139
The comparison operators, 139
The logical operators, 139
The main function, 112
The operating sequence, 82
The operations symbols, 139
The static modifier, 129
The status byte group’s enable register, 95
Thermistor and RTD measurements, 62
Thermocouple measurements, 63
Thermocouple reference temperature compensation, 64
Thermocouples and CAL:TARE, 100
TIME

INPut:DEB:TIME, 237
Time relationship of readings in FIFO, 117
TIMe?

ALGorithm[:EXPLicit]:TIMe?, 201
Timer

SAMP:TIMer, 260
SAMP:TIMer?, 260
TRIG:COUNt, 312
TRIG:TIMer, 314

Timer, programming the trigger, 80
TIMer?

TRIG:TIMer?, 315
TOTalize

SENSe:FUNCtion:TOTalize, 280

Totalizer function, 68
Transducers, detecting open, 103
TRIG:COUNt, 312
TRIG:COUNt?, 312
TRIG:IMMediate, 313
TRIG:SOURce, 313
TRIG:SOURce?, 314
TRIG:TIMer, 314
TRIG:TIMer?, 315
TRIGger subsystem, 310 - 315
trigger system

ABORt subsystem, 189
ARM subsystem, 208 - 210
INITiate subsystem, 236
TRIGger subsystem, 310 - 315

Trigger, variable width pulse per, 70
TTLTrg:SOURce

OUTPut:TTLTrg:SOURce?, 254
TTLTrg

OUTP:TTLT :STATe?, 255
OUTP:TTLTrg :STATe, 255

TYPe
OUTPut:TYPE, 255

Type, setting output drive, 69
TYPe?

OUTPut:TYPE?, 256
Types, data, 129

U

Unary arithmetic operator, 139
Unary logical operator, 127
Unary operators, 127
Unary-expression:, 134
Unary-operator:, 134
Unexpected channel offsets or overloads, 102
UNSTrained

SENSe:STRain:UNSTrained, 287
SENSe:STRain:UNSTrained?, 288

Updating the algorithm variables, 86
Updating the algorithm variables and coefficients, 86
Updating the status system and VXI interrupts, 97
Usage, example language, 111
Using the status system, 90

V

Value types
parameter data, 187
returned, 187

Values, assigning, 138
Variable Command Syntax, 183

400 Index

Variable definition
global, 74

Variable frequency square-wave output (FM), 71
Variable width pulse per trigger, 70
Variable width pulses at fixed frequency (PWM), 70
Variables

reading directly, 84
Variables, declaring, 138
Variables, global, 132
Variables, initializing, 116
Variables, modifying running algorithm, 86
Variables, reading algorithm, 83
Verifying a successful configuration, 21
VERsion

DIAG:VERSion?, 230
VERsion?

SYST:VERSion?, 309
Voids Warranty

Cutting Input Protect Jumper, 19
VOLTage

CAL:CONF:VOLT, 213
CAL:VALue:VOLTage, 219
SENS:FUNC:VOLTage, 280

Voltage, setting the HP E1511 strain bridge SCP
excitation, 59
VOLTage:AMPLitude

OUTPut:VOLTage:AMPLitude, 256
OUTPut:VOLTage:AMPLitude?, 257

W

Warranty, 9
Voided by cutting Input Protect Jumper, 19

What *CAL? does, 72
When to make shield connections, 377
When:, re-execute *CAL?, 73
Which FIFO mode?, 84
WIDTh

SOURce:PULSe:WIDTh, 294
WIDTh?

SOURce:PULSe:WIDTh?, 294
WINDow

ALGorithm:UPDate:WINDow, 206
WINDow?

ALGorithm:UPDate:WINDow?, 207
Wiring

planning for thermocouple, 26
planning layout, 23
signal connection, 34

Wiring and attaching the terminal module, 41
Wiring maps

Terminal Module, 45
Wiring techniques, for noise reduction, 376
Wiring the terminal module, 41
writeboth(expression,cvt_element), 128
writecvt(expression,cvt_element), 116, 128
writefifo(expression), 117, 128
Writing the algorithm, 124
Writing values to CVT elements, 116
Writing values to the FIFO, 117

Z

ZERO?
CAL:ZERO?, 220

Index 401

	HP E1419A Measurement and Control Module User's Manual
	Index
	
	(First_loop), determining first execution, 115
	(FM), fixed width pulses at variable frequency, 71
	(FM), variable frequency square-wave output, 71
	(Important!), performing channel calibration, 72
	(PWM), variable width pulses at fixed frequency, 70
	*CAL?, how to use, 72
	*RST
	 and power-on defaults, 53
	4-20 mA, adding sense circuits for, 44
	A
	A common error to avoid, 120
	A complete thermocouple measurement command sequence, 65
	sequence, 65
	A very simple first algorithm, 124
	Abbreviated Commands, 182
	ABORt subsystem, 189
	abs(expression), 128
	Access, bitfield, 131
	Accessing I/O channels, 114
	Accessing the E1419A's resources, 113
	Accessories
	 Rack Mount Terminal Panel, 45
	Accuracy
	 DC Volts, 334
	 Sample timer, 333
	 Temperature, 335
	Adding settling delay for specific channels, 106
	Adding terminal module components, 44
	Additive-expression:, 134
	Additive-operator:, 134
	ADDRess
	 MEM:VME:ADDR, 246
	ADDRess?
	 MEM:VME:ADDR?, 246
	After INIT, 53
	ALG:DEFINE in the programming sequence, 121
	ALG:DEFINE's three data formats, 121
	Algorithm definition, 75
	Algorithm execution order, 120
	Algorithm Language reference, 126
	Algorithm language statement
	 writecvt(), 116
	 writefifo(), 117
	Algorithm, A very simple first, 124
	Algorithm, data acquisition, 125
	Algorithm, exiting the, 128
	Algorithm, process monitoring, 125
	Algorithm, running the, 124
	Algorithm, writing the, 124
	Algorithm-definition:, 137
	ALGorithm:FUNCtion:DEFine, 201
	ALGorithm:OUTPut:DELay, 203
	ALGorithm:OUTPut:DELay?, 204
	ALGorithm:UPDate:CHANnel, 205
	ALGorithm:UPDate:WINDow, 206
	ALGorithm:UPDate:WINDow?, 207
	ALGorithm:UPDate[:IMMediate], 204
	ALGorithm[:EXPLicit]:ARRay, 191
	ALGorithm[:EXPLicit]:ARRay?, 192
	ALGorithm[:EXPLicit]:DEFine, 192
	ALGorithm[:EXPLicit]:SCALar, 196
	ALGorithm[:EXPLicit]:SCALar?, 197
	ALGorithm[:EXPLicit]:SCAN:RATio, 197
	ALGorithm[:EXPLicit]:SCAN:RATio?, 198
	ALGorithm[:EXPLicit]:SIZe?, 199
	ALGorithm[:EXPLicit]:TIMe?, 201
	ALGorithm[:EXPLicit][:STATe], 199
	ALGorithm[:EXPLicit][:STATe]?, 200
	Algorithms
	 disabling, 87
	 enabling, 87
	Algorithms, defining, 120
	Algorithms, INITiating/Running, 81
	Algorithms, non-control, 125
	Algorithms, starting, 81
	ALL?
	 DATA:FIFO:ALL?, 266
	AMPLitude
	 OUTP:CURRent:AMPLitude, 249
	 OUTPut:CURRent:AMPLitude?, 250
	An example using the operation group, 93
	APERture
	 SENSe:FREQuency:APERture, 270
	APERture?
	 SENSe:FREQuency:APERture?, 271
	Arithmetic operators, 127
	Arm and trigger sources, 78
	ARM subsystem, 208 - 210
	ARM:SOURce, 209
	ARM:SOURce?, 210
	ARRay
	 ALGorithm[:EXPLicit]:ARRay, 191
	ARRay?
	 ALGorithm[:EXPLicit]:ARRay?, 192
	Assigning values, 138
	Assignment operator, 127
	Attaching and removing the terminal module, 43
	Attaching the HP E1415 terminal module, 43
	Attaching the terminal module, 41
	Autoranging, more on, 104
	Available Power for SCPs, 333
	B
	Before INIT, 53
	Bit-number:, 134
	Bitfield access, 131
	BLOCK), continuously reading the FIFO (FIFO mode, 84
	mode, 84
	Byte, enabling events to be reported in the status, 93
	Byte, reading the status, 94
	C
	C language algorithms
	 defining, 74
	CAL:CONF:RES, 212
	CAL:CONF:VOLT, 213
	CAL:SETup, 214
	CAL:SETup?, 214
	CAL:STORe, 215
	CAL:TARE, 216
	CAL:TARE and thermocouples, 100
	CAL:TARE, resetting, 102
	CAL:TARE:RESet, 218
	CAL:TARE?, 218
	CAL:VAL:RESistance, 219
	CAL:VAL:VOLTage, 219
	CAL:ZERO?, 220
	CALibration subsystem, 211 - 221
	Calibration, channel
	 *CAL?, 316
	Calibration, control of, 19
	Calling user defined functions, 118
	Capability, maximum tare, 102
	CAUTIONS
	 Loss of process control by algorithm, 189, 200, 310
	 Safe handling procedures, 15
	Certification, 9
	Changing an algorithm while it's running, 122
	Changing gains, 102
	Changing gains or filters, 102
	Changing timer interval while scanning, 313
	CHANnel
	 ALGorithm:UPDate:CHANnel, 205
	Channel calibration
	 *CAL?, 316
	Channels
	 defined input, 115
	 output, 57, 67, 115
	 SENSe:REFerence:CHANnels, 283
	 setting up analog input, 57
	 setting up digital input, 67
	Channels, accessing I/O, 114
	Channels, adding settling delay for specific, 106
	Channels, input, 114
	Channels, output, 114
	Channels, special identifiers for, 127
	Characteristics, settling, 104
	Checking for problems, 105
	CHECksum?
	 DIAG:CHECK?, 225
	Clearing event registers, 96
	Clearing the enable registers, 95
	Coefficients, 86
	Command
	 Abbreviated, 182
	 Implied, 183
	 Linking, 185
	 Separator, 182
	Command Quick Reference, 326 - 332
	Command Reference, Common
	 *CAL?, 316
	 *CLS, 317
	 *DMC, 317
	 *EMC, 317
	 *EMC?, 317
	 *ESE, 317
	 *ESE?, 318
	 *ESR?, 318
	 *GMC?, 318
	 *IDN?, 318
	 *LMC?, 319
	 *OPC, 319
	 *OPC?, 319
	 *PMC, 320
	 *RMC, 320
	 *RST, 320
	 *SRE, 321
	 *SRE?, 321
	 *STB?, 321
	 *TRG, 321
	 *TST?, 322
	 *WAI, 325
	Command Reference, SCPI, 188
	 ABORt subsystem, 189
	 ALGorithm:FUNCtion:DEFine, 201
	 ALGorithm:OUTPut:DELay, 203
	 ALGorithm:OUTPut:DELay?, 204
	 ALGorithm:UPDate:CHANnel, 205
	 ALGorithm:UPDate:WINDow, 206
	 ALGorithm:UPDate:WINDow?, 207
	 ALGorithm:UPDate[:IMMediate], 204
	 ALGorithm[:EXPLicit]:ARRay, 191
	 ALGorithm[:EXPLicit]:ARRay?, 192
	 ALGorithm[:EXPLicit]:DEFine, 192
	 ALGorithm[:EXPLicit]:SCALar, 196
	 ALGorithm[:EXPLicit]:SCALar?, 197
	 ALGorithm[:EXPLicit]:SCAN:RATio, 197
	 ALGorithm[:EXPLicit]:SCAN:RATio?, 198
	 ALGorithm[:EXPLicit]:SIZe?, 199
	 ALGorithm[:EXPLicit]:TIMe?, 201
	 ALGorithm[:EXPLicit][:STATe], 199
	 ALGorithm[:EXPLicit][:STATe]?, 200
	 ARM subsystem, 208 - 210
	 ARM:IMMediate, 209
	 ARM:SOURce, 209
	 ARM:SOURce?, 210
	 CALibration subsystem, 211 - 221
	 CALibration:CONFigure:RESistance, 212
	 CALibration:CONFigure:VOLTage, 213
	 CALibration:SETup, 214
	 CALibration:SETup?, 214
	 CALibration:STORe, 215
	 CALibration:TARE, 216
	 CALibration:TARE:RESet, 218
	 CALibration:TARE?, 218
	 CALibration:VALue:RESistance, 219
	 CALibration:VALue:VOLTage, 219
	 CALibration:ZERO?, 220
	 DIAGnostic subsystem, 222 - 230
	 DIAGnostic:CALibration:SETup[:MODE], 223
	 DIAGnostic:CALibration:SETup[:MODE]?, 223
	 DIAGnostic:CALibration:TARe:MODE, 224
	 DIAGnostic:CALibration:TARe:MODE?, 224
	 DIAGnostic:CHECksum?, 225
	 DIAGnostic:CUSTom:LINear, 225
	 DIAGnostic:CUSTom:PIECewise, 226
	 DIAGnostic:CUSTom:REFerence:TEMPerature, 226
	 DIAGnostic:IEEE, 227
	 DIAGnostic:IEEE?, 227
	 DIAGnostic:INTerrupt:LINe, 228
	 DIAGnostic:INTerrupt:LINe?, 228
	 DIAGnostic:OTDetect[:STATe], 228
	 DIAGnostic:OTDetect[:STATe]?, 229
	 DIAGnostic:QUERy:SCPREAD, 230
	 DIAGnostic:VERSion?, 230
	 FETCh?, 231
	 FETCh? subsystem, 231 - 232
	 FORMat subsystem, 233 - 235
	 FORMat:DATA, 233
	 FORMat:DATA?, 234
	 INITiate subsystem, 236
	 INITiate:IMMediate, 236
	 INP:THReshold:LEVel?, 244
	 INPut subsystem, 237 - 244
	 INPut:FILTer:LPASs:FREQuency?, 239
	 INPut:FILTer:LPASs:STATe, 240
	 INPut:FILTer:LPASs:STATe?, 240
	 INPut:GAIN, 241
	 INPut:GAIN?, 242
	 INPut:L:DEBounce:TIME, 237
	 INPut:LOW, 242
	 INPut:LOW?, 243
	 INPut:LPASs:FILTer:FREQuency, 238
	 INPut:POLarity, 243
	 INPut:POLarity?, 243
	 MEMory subsystem, 245 - 248
	 MEMory:VME:ADDRess, 246
	 MEMory:VME:ADDRess?, 246
	 MEMory:VME:SIZE, 246
	 MEMory:VME:SIZE?, 247
	 MEMory:VME:STATe, 247
	 MEMory:VME:STATe?, 248
	 OUTPut subsystem, 249 - 257
	 OUTPut:CURRent:AMPLitude, 249
	 OUTPut:CURRent:AMPLitude?, 250
	 OUTPut:CURRent:STATe, 251
	 OUTPut:CURRent:STATe?, 251
	 OUTPut:POLarity, 252
	 OUTPut:POLarity?, 252
	 OUTPut:SHUNt, 253
	 OUTPut:SHUNt?, 253
	 OUTPut:TTLTrg:SOURce, 254
	 OUTPut:TTLTrg:SOURce?, 254
	 OUTPut:TTLTrg:STATe, 255
	 OUTPut:TTLTrg:STATe?, 255
	 OUTPut:TYPE, 255
	 OUTPut:TYPE?, 256
	 OUTPut:VOLTage:AMPLitude, 256
	 OUTPut:VOLTage:AMPLitude?, 257
	 ROUTe subsystem, 258 - 259
	 ROUTe:SEQuence:DEFine?, 258
	 ROUTe:SEQuence:POINts?, 259
	 SAMPle subsystem, 260 - 261
	 SAMPle:TIMer, 260
	 SAMPle:TIMer?, 260
	 SENSe subsystem, 262 - 289
	 SENSe:CHANnel:SETTling, 263
	 SENSe:CHANnel:SETTling?, 264
	 SENSe:DATA:COUN:HALF?, 267
	 SENSe:DATA:CVTable:RESet, 265
	 SENSe:DATA:CVTable?, 264
	 SENSe:DATA:FIFO:ALL?, 266
	 SENSe:DATA:FIFO:COUNt?, 266
	 SENSe:DATA:FIFO:HALF?, 267
	 SENSe:DATA:FIFO:MODE, 268
	 SENSe:DATA:FIFO:MODE?, 269
	 SENSe:DATA:FIFO:PART?, 269
	 SENSe:DATA:FIFO:RESet, 270
	 SENSe:FREQuency:APERture, 270
	 SENSe:FREQuency:APERture?, 271
	 SENSe:FUNC:CONDition, 271
	 SENSe:FUNCtion:CUSTom, 272
	 SENSe:FUNCtion:CUSTom:REFerence, 273
	 SENSe:FUNCtion:CUSTom:TCouple, 274
	 SENSe:FUNCtion:FREQuency, 275
	 SENSe:FUNCtion:RESistance, 275
	 SENSe:FUNCtion:STRain:FBEN, 277
	 SENSe:FUNCtion:STRain:FBP, 277
	 SENSe:FUNCtion:STRain:FPO, 277
	 SENSe:FUNCtion:STRain:HBEN, 277
	 SENSe:FUNCtion:STRain:QUAR, 277
	 SENSe:FUNCtion:STRainHPO:, 277
	 SENSe:FUNCtion:TEMPerature, 278
	 SENSe:FUNCtion:TOTalize, 280
	 SENSe:FUNCtion:VOLTage, 280
	 SENSe:REFerence, 281
	 SENSe:REFerence:CHANnels, 283
	 SENSe:REFerence:TEMPerature, 284
	 SENSe:STRain:EXCitation, 284
	 SENSe:STRain:EXCitation?, 285
	 SENSe:STRain:GFACtor, 285
	 SENSe:STRain:GFACtor?, 286
	 SENSe:STRain:POISson, 286
	 SENSe:STRain:POISson?, 287
	 SENSe:STRain:UNSTrained, 287
	 SENSe:STRain:UNSTrained?, 288
	 SENSe:TOTalize:RESet:MODE, 288
	 SENSe:TOTalize:RESet:MODE?, 289
	 SOURce subsystem, 290 - 295
	 SOURce:FM:STATe, 290
	 SOURce:FM:STATe?, 291
	 SOURce:FUNC[:SHAPe]:CONDition, 291
	 SOURce:FUNC[:SHAPe]:PULSe, 292
	 SOURce:FUNC[:SHAPe]:SQUare, 292
	 SOURce:PULM:STATe, 292
	 SOURce:PULM:STATe?, 293
	 SOURce:PULSe:PERiod, 293
	 SOURce:PULSe:PERiod?, 294
	 SOURce:PULSe:WIDTh, 294
	 SOURce:PULSe:WIDTh?, 294
	 STATus subsystem, 296 - 307
	 STATus:OPERation:CONDition?, 298
	 STATus:OPERation:ENABle, 299
	 STATus:OPERation:ENABle?, 300
	 STATus:OPERation:EVENt?, 300
	 STATus:OPERation:NTRansition, 300
	 STATus:OPERation:NTRansition?, 301
	 STATus:OPERation:PTRansition, 301
	 STATus:OPERation:PTRansition?, 302
	 STATus:PRESet, 302
	 STATus:QUEStionable:CONDition?, 303
	 STATus:QUEStionable:ENABle, 304
	 STATus:QUEStionable:ENABle?, 304
	 STATus:QUEStionable:EVENt?, 305
	 STATus:QUEStionable:NTRansition, 305
	 STATus:QUEStionable:NTRansition?, 306
	 STATus:QUEStionable:PTRansition, 306
	 STATus:QUEStionable:PTRansition?, 307
	 SYSTem subsystem, 308 - 309
	 SYSTem:CTYPe?, 308
	 SYSTem:ERRor?, 308
	 SYSTem:VERSion?, 309
	 TRIGger subsystem, 310 - 315
	 TRIGger:COUNt, 312
	 TRIGger:COUNt?, 312
	 TRIGger:IMMediate, 313
	 TRIGger:SOURce, 313
	 TRIGger:SOURce?, 314
	 TRIGger:TIMer, 314
	 TRIGger:TIMer?, 315
	Command sequences, defined, 21
	Comment lines, 141
	Comments:, 138
	Common Command Format, 182
	Common mode noise, 378
	Common mode rejection, 334
	Common mode voltage
	 Maximum, 334
	Common mode voltage limits, 377
	Comparison operators, 127
	Compensating for system offsets, 100
	Compensation, thermocouple reference temperature, 64
	64
	Components, adding terminal module, 44
	Compound-statement:, 136
	CONDition
	 SENSe:FUNC:CONDition, 271
	 SOURce:FUNC[:SHAPe]:CONDition, 291
	 STAT:OPER:CONDition?, 298
	CONDition?
	 STAT:QUES:CONDition?, 303
	Conditional constructs, 128
	Conditional execution, 139
	Configuring programmable analog SCP parameters, 57
	Configuring the enable registers, 93
	Configuring the HP E1415, 13
	Configuring the Reference Jumpers, 32
	Configuring the transition filters, 93
	Conformity, declaration, 11
	Connection
	 recommended, 34
	 signals to channels, 34
	Connections
	 Guard, 377
	Considerations, special, 102
	Constant:, decimal, 133
	Constant:, hexadecimal, 133
	Constant:, octal, 133
	Constructs, conditional, 128
	Continuous Mode, 313
	Continuously reading the FIFO (FIFO mode BLOCK), 84
	BLOCK), 84
	Control, program flow, 128
	Conversion, EU, 372
	Conversion, linking channels to EU, 59
	Conversions, custom EU, 67
	Conversions, custom reference temperature EU, 99
	Conversions, custom thermocouple EU, 99
	COUNt?
	 SENS:DATA:FIFO:COUNt?, 266
	Counter, setting the trigger, 80
	Creating and loading custom EU conversion tables, 98
	Creating conversion tables, 100
	CTYPe?
	 SYST:CTYPe?, 308
	Current Value Table
	 SENSe:DATA:CVTable?, 264
	CUSTom
	 SENS:FUNC:CUSTom, 272
	Custom EU conversion tables
	 creating, 98
	 loading, 98
	Custom EU conversions, 67
	Custom EU operation, 99
	Custom EU tables, 99
	Custom reference temperature EU conversions, 99
	Custom thermocouple EU conversions, 99
	CVT
	 SENSe:DATA:CVTable?, 264
	CVT elements, reading, 117
	CVT elements, writing value to, 116
	CVT, sending data to, 116
	D
	DATA
	 FORMat:DATA, 233
	 FORMat:DATA?, 234
	Data acquisition algorithm, 125
	Data structures, 130
	Data types, 129
	Data, retrieving algorithm, 83
	DATA:FIFO:ALL?, 266
	Decimal constant:, 133
	Declaration initialization, 132
	Declaration of conformity, 11
	Declaration:, 136
	Declarations:, 136
	Declarator:, 135
	Declaring variables, 138
	Defaults
	 power-on and *RST, 53
	DEFine
	 ALGorithm:FUNCtion:DEFine, 201
	 ALGorithm[:EXPLicit]:DEFine, 192
	 ROUT:SEQ:DEF?, 258
	Defined input and output channels, 115
	Defining algorithms, 120
	Defining an algorithm for swapping, 122
	Defining and accessing global variables, 115
	Defining C language algorithms, 74
	Defining data storage, 76
	DELay
	 ALGorithm:OUTPut:DELay, 203
	DELay?
	 ALGorithm:OUTPut:DELay?, 204
	Detecting open transducers, 103
	Determining an algorithm's size, 123
	Determining first execution (First_loop), 115
	Determining model
	 SCPI programming, 318
	DIAG:CHECK?, 225
	DIAG:CUST:REF:TEMP, 226
	DIAG:INT:LINe, 228
	DIAG:INT:LINe?, 228
	DIAG:OTD[:STATe], 228
	DIAG:OTD[:STATe]?, 229
	DIAG:VERSion?, 230
	DIAGnostic
	 DIAGnostic:CALibration:SETup[:MODE], 223
	 DIAGnostic:CALibration:SETup[:MODE]?, 223
	 DIAGnostic:CALibration:TARe:MODE, 224
	 DIAGnostic:CALibration:TARe:MODE?, 224
	 DIAGnostic:CUSTom:LINear, 225
	 DIAGnostic:CUSTom:PIECewise, 226
	 DIAGnostic:IEEE, 227
	 DIAGnostic:IEEE?, 227
	 DIAGnostic:QUERy:SCPREAD, 230
	DIAGnostic:CALibration:SETup[:MODE], 223
	DIAGnostic:CALibration:SETup[:MODE]?, 223
	DIAGnostic:CALibration:TARe:MODE, 224
	DIAGnostic:CALibration:TARe:MODE?, 224
	DIAGnostic:CUSTom:LINear, 225
	DIAGnostic:CUSTom:PIECewise, 226
	DIAGnostic:IEEE, 227
	DIAGnostic:IEEE?, 227
	DIAGnostic:OTDetect, 103
	DIAGnostic:QUERy:SCPREAD, 230
	Digital evaluation of type float, 131
	Directly, reading status groups, 95
	Disabling flash memory access (optional), 19
	Disabling the input protect feature (optional), 19
	Documentation history, 10
	Does, what *CAL?, 72
	Drivers; instrument, 21
	DSP, 372
	E
	ENABle
	 STAT:OPER:ENABle, 299
	 STAT:QUES:ENABle, 304
	ENABle?
	 STAT:OPER:ENABle?, 300
	 STAT:QUES:ENABle?, 304
	Enabling and disabling algorithms, 87
	Enabling events to be reported in the status byte, 93
	Environment, the algorithm execution, 112
	Equality-expression:, 135
	Equality-operator:, 135
	Error Messages, 363 - 370
	 Self Test, 366
	ERRor?
	 SYST:ERRor?, 308
	EU, 372
	EU Conversion, 372
	EVENt?
	 STAT:OPER:EVENt?, 300
	 STAT:QUES:EVENt?, 305
	Example command sequence, 88
	Example language usage, 111
	Example programs, about, 21
	Examples, operation status group, 94
	Examples, questionable data group, 93
	Examples, standard event group, 94
	EXCitation
	 SENSe:STRain:EXCitation, 284
	 SENSe:STRain:EXCitation?, 285
	Executing the programming model, 53
	Execution, conditional, 139
	Exiting the algorithm, 128
	Expression-statement:, 136
	Expression:, 135
	F
	Faceplate connector pin-signal lists, 27
	FIFO, reading values from the, 117
	FIFO, sending data to, 116
	FIFO, time relationship of readings in, 117
	FIFO, writing values to, 117
	Filters, 102
	Filters, adding circuits to terminal module, 44
	Filters, configuring the transition, 93
	Fixed width pulses at variable frequency (FM), 71
	Fixing the problem, 105
	Flash Memory, 372
	Flash memory access, disabling, 19
	Flash memory limited lifetime, 215
	Floating point as integer, 131
	FM:STATe
	 SOURce:FM:STATe, 290
	FM:STATe?
	 SOURce:FM:STATe?, 291
	Format
	 Common Command, 182
	 SCPI Command, 182
	Format, specifying the data, 76
	FORMat:DATA, 233
	FORMat:DATA?, 234
	Formats, ALG:DEFINE's three data, 121
	FREQuency
	 INPut:FILT:FREQ, 238
	 SENSe:FUNCtion:FREQuency, 275
	Frequency function, 68
	Frequency, setting algorithm execution, 88
	Frequency, setting filter cutoff, 58
	FREQuency?
	 INP:FILT:FREQ?, 239
	Function, frequency, 68
	Function, setting input, 68
	Function, static state (CONDition), 68, 70
	Function, the main, 112
	Function, totalizer, 68
	Functions and statements, intrinsic
	 abs(expression), 128
	 interrupt(), 117, 128
	 max(expression1,expression2), 128
	 min(expression1,expression2), 128
	 writeboth(expression,cvt_element), 128
	 writecvt(expression,cvt_element), 116, 128
	 writefifo(expression), 117, 128
	Functions, calling user defined, 118
	Functions, linking output channels to, 67
	Functions, setting output, 69
	Functions:, 128
	G
	GAIN
	 channel, 316
	 INPut:GAIN, 241
	GAIN?
	 INP:GAIN?, 242
	Gains, setting SCP, 57
	GFACtor
	 SENSe:STRain:GFACtor, 285
	 SENSe:STRain:GFACtor?, 286
	Global variable definition, 74
	Global variables, 132
	 accessing, 115
	 defining, 115
	Glossary, 371 - 374
	Grounding
	 Noise due to inadequate, 377
	Group, an example using the operation, 93
	Guard connections, 377
	H
	HALF?
	 SENS:DATA:FIFO:COUNt:HALF?, 267
	 SENS:DATA:FIFO:HALF?, 267
	Hexadecimal constant:, 133
	HINTS
	 for quiet measurements, 34
	 Read chapter 3 before chapter 4, 109
	How to use *CAL?, 72
	HP E1415, configuring the, 13
	HP E1419A background operation, 96
	I
	Identifier:, 133
	Identifiers, 126
	IEEE +/- INF, 234
	IMMediate
	 ALGorithm:UPDate[:IMMediate], 204
	 ARM:IMMediate, 209
	 INIT:IMM, 236
	 TRIG:IMMediate, 313
	Impedance, input, 334
	Implied Commands, 183
	IMPORTANT!
	 Do use CAL:TARE for copper TC wiring, 100
	 Don't use CAL:TARE for thermocouple wiring, 100
	INF, IEEE, 234
	INIT
	 after, 53
	 before, 53
	Init-declarator-list:, 135
	Init-declarator:, 135
	INIT:IMM, 236
	Initialization, declaration, 132
	Initializing variables, 116
	INITiate subsystem, 236
	INITiating/Running algorithms, 81
	INP:FILT:FREQ?, 239
	INP:FILT:LPAS:STAT, 240
	INP:FILT:LPAS:STAT?, 240
	INP:GAIN?, 242
	Input channels, 114
	Input impedance, 334
	Input protect feature, disabling, 19
	INPut subsystem, 237 - 244
	Input voltage, maximum, 334
	INPut:DEB:TIME, 237
	INPut:FILT:FREQ, 238
	INPut:GAIN, 241
	INPut:LOW, 242
	INPut:LOW?, 243
	INPut:POLarity, 243
	INPut:POLarity?, 243
	INPut:THReshold:LEVel?, 244
	Inputs, setting up digital, 67
	Installing signal conditioning plug-ons, 15
	Instrument drivers, 21
	Integer evaluation of type float, 131
	Integer values from type float, 131
	Interrupt function, 117
	Interrupt level, setting NOTE, 13
	interrupt(), 117, 128
	Interrupts
	 updating the status system, 97
	 VXI, 97
	Intrinsic functions and statements
	 abs(expression), 128
	 interrupt(), 117, 128
	 max(expression1,expression2), 128
	 min(expression1,expression2), 128
	 writeboth(expression,cvt_element), 128
	 writecvt(expression,cvt_element), 116, 128
	 writefifo(expression), 117, 128
	Intrinsic-statement:, 136
	Isothermal reference measurement, NOTE, 26
	K
	Keywords, special HP E1419A reserved, 126
	Keywords, standard reserved, 126
	L
	Language syntax summary, 133
	Language, overview of the algorithm, 110
	Layout
	 Terminal Module, 30
	LEVel?
	 INPut:THReshold, 244
	Lifetime limitation, Flash memory, 215
	Limits
	 Common mode voltage, 377
	LINe
	 DIAG:INT:LINe, 228
	LINe?
	 DIAG:INT:LINe?, 228
	Lines, comment, 141
	Linking channels to EU conversion, 59
	Linking Commands, 185
	Linking output channels to functions, 67
	Linking resistance measurements, 61
	Linking strain measurements, 66
	Linking temperature measurements, 62
	Linking voltage measurements, 60
	Lists
	 Faceplate connector pin-signal , 27
	Logical operators, 127
	Logical-AND-expression:, 135
	LOW
	 INPut:LOW, 242
	 INPut:LOW?, 243
	Low-noise measurements, HINTS, 34
	M
	max(expression1,expression2), 128
	Maximum
	 Common mode voltage, 334
	 Input voltage, 334
	 Tare cal offset, 334
	Maximum tare capability, 102
	Measurement
	 Ranges, 333
	 Resolution, 333
	Measurements
	 terminal block considerations for TC, 33
	Measurements, linking resistance, 61
	Measurements, linking strain, 66
	Measurements, linking temperature, 62
	Measurements, linking voltage, 60
	Measurements, reference measurement before thermocouple, 65
	thermocouple, 65
	Measurements, thermocouple, 63
	Measuring the reference temperature, 64
	Meaurement
	 Accuracy DC Volts, 334
	MEM:VME:ADDR, 246
	MEM:VME:ADDR?, 246
	MEM:VME:SIZE, 246
	MEM:VME:SIZE?, 247
	MEM:VME:STATe, 247
	MEM:VME:STATe?, 248
	Messages, error, 363 - 370
	min(expression1,expression2), 128
	MODE
	 SENS:DATA:FIFO:MODE, 268
	 SENSe:TOTalize:RESet:MODE, 288
	Mode, selecting the FIFO, 77
	MODE?
	 SENS:DATA:FIFO:MODE?, 269
	 SENSe:TOTalize:RESet:MODE?, 289
	Mode?, which FIFO, 84
	Model, determining
	 SCPI programming, 318
	Modifier, the static, 129
	Modifying running algorithm variables, 86
	Modifying the terminal module circuit, 44
	Module
	 SCPs and Terminal, 28
	Modules
	 Terminal, 28
	More on auto ranging, 104
	Multiplicative-expression:, 134
	Multiplicative-operator:, 134
	N
	NaN, 234
	Noise
	 Common mode, 378
	 Normal mode, 378
	Noise due to inadequate grounding, 377
	Noise reduction with amplifier SCPs, NOTE, 106
	Noise reduction, wiring techniques, 376
	Noise Rejection, 378
	Noisy measurements
	 Quieting, 34
	Non-Control algorithms, 125
	Normal mode noise, 378
	Not-a-Number, 234
	NOTES
	 *CAL? and CAL:TARE turns off then on OTD, 229
	 *RST effect on custom EU tables, 99
	 *TST? sets default ASC,7 data format, 234
	 + & - overvoltage return format from FIFO, 266, 268, 270
	270
	 ALG:SCAN:RATIO vs. ALG:UPD, 198
	 ALG:SIZE? return for undefined algorithm, 199
	 ALG:STATE effective after ALG:UPDATE, 87
	 ALG:STATE effective only after ALG:UPD, 199
	 ALG:TIME? return for undefined algorithm, 201
	 Algorithm Language case sensitivity, 127
	 Algorithm Language reserved keywords, 126
	 Algorithm source string terminated with null, 121
	 Algorithm source string terminates with null, 194
	 Algorithm swapping limitations, 196
	 Algorithm Swapping restrictions, 123
	 Algorithm variable declaration and assignment, 115
	 Amplifier SCPs can reduce measurement noise, 106
	 BASIC's vs. 'C's "is equal to" symbol, 139
	 Bitfield access 'C' vs. Algorithm Language, 131
	 Cannot declare channel ID as variable, 127
	 Combining SCPI commands, 186
	 CVT contents after *RST, 265
	 Decimal constants can be floating or integer, 133
	 Default (*RST) Engineering Conversion, 60
	 Define user function before algorithm calls , 118
	 Do not CAL:TARE thermocouple wiring, 216
	 Do use CAL:TARE for copper in TC wiring, 100
	 Do use CAL:TARE for copper TC wiring, 216
	 Don't use CAL:TARE for thermocouple wiring, 100
	 Flash memory limited lifetime, 102, 215
	 Isothermal reference measurements, 26
	 MEM subsystem vs. command module model, 245
	 MEM subsystem vs. TRIG and INIT sequence, 245
	 MEM system vs TRIG and INIT sequence, 232
	 Memory required by an algorithm, 122
	 Number of updates vs. ALG:UPD:WINDOW, 191, 196, 207
	196, 207
	 Open transducer detect restrictions, 103
	 OUTP:CURR:AMPL command, 59
	 OUTP:CURR:AMPL for resistance measurements, 249
	249
	 OUTP:VOLT:AMPL command, 59
	 Reference to noise reduction literature, 377
	 Resistance temperature measurements, 62
	 Saving time when doing channel calibration, 73
	 Selecting manual range vs. SCP gains, 60
	 Setting the interrupt level, 13
	 Settings conflict, ARM:SOUR vs TRIG:SOUR, 208, 313
	313
	 Thermocouple reference temperature usage, 281, 284
	 TRIGger:SOURce vs. ARM:SOURce, 79 - 80
	 Warmup before executing *TST?, 367
	 When algorithm variables are initialized, 132
	NTRansition
	 STAT:OPER:NTRansition, 300
	 STAT:QUES:NTRansition, 305
	NTRansition?
	 STAT:OPER:NTRansition?, 301
	 STAT:QUES:NTRansition?, 306
	O
	Octal constant:, 133
	Offset
	 A/D, 214, 316
	 channel, 214, 316
	Offsets, compensating for system, 100
	Offsets, residual sensor, 101
	Offsets, system wiring, 100
	Operating model, 52
	Operating sequence, 118
	Operation, 72, 101
	Operation and restrictions, 72
	Operation status group examples, 94
	Operation, custom EU, 99
	Operation, HP E1419A background, 96
	Operation, standard EU, 98
	Operator, assignment, 127
	Operator, unary arithmetic, 139
	Operator, unary logical, 127
	Operators, 127
	Operators, arithmetic, 127
	Operators, comparison, 127
	Operators, logical, 127
	Operators, the arithmetic, 139
	Operators, the comparison, 139
	Operators, the logical, 139
	Operators, unary, 127
	Option A3F, 45
	Order, algorithm execution, 120
	OTD restrictions, NOTE, 103
	OTDetect, DIAGnostic:OTDetect, 103
	OUTP:CURRent:AMPLitude, 249
	OUTP:CURRent:AMPLitude?, 250
	OUTP:SHUNt, 253
	OUTP:SHUNt?, 253
	OUTP:TTLT:STATe, 255
	OUTP:TTLT:STATe?, 255
	Output channels, 114
	OUTPut subsystem, 249 - 257
	OUTPut:CURRent:STATe, 251
	OUTPut:CURRent:STATe?, 251
	OUTPut:POLarity, 252
	OUTPut:POLarity?, 252
	OUTPut:TTLTrg:SOURce, 254
	OUTPut:TTLTrg:SOURce?, 254
	OUTPut:TYPE, 255
	OUTPut:TYPE?, 256
	OUTPut:VOLTage:AMPLitude, 256
	OUTPut:VOLTage:AMPLitude?, 257
	Outputs, setting up digital, 68
	Outputting trigger signals, 81
	OVER), reading the latest FIFO values (FIFO mode, 86
	86
	Overall program structure, 142
	Overall sequence, 118
	Overloads, unexpected channel, 102
	Overview of the algorithm language, 110
	P
	Parameter data and returned value types, 187
	Parameters, configuring programmable analog SCP, 57
	57
	PART?
	 SENS:DATA:FIFO:PART?, 269
	Performing channel calibration (Important!), 72
	PERiod
	 SOURce:PULSe:PERiod, 293
	PERiod?
	 SOURce:PULSe:PERiod?, 294
	Planning
	 grouping channels to signal conditioning, 23
	 planning wiring layout, 23
	 sense vs. output SCPs, 25
	 thermocouple wiring, 26
	Plug-ons, installing signal conditioning, 15
	Points
	 ROUT:SEQ:POINts?, 259
	POISson
	 SENSe:STRain:POISson, 286
	 SENSe:STRain:POISson?, 287
	POLarity
	 INPut:POLarity, 243
	 OUTPut:POLarity, 252
	Polarity, setting input, 67
	Polarity, setting output, 69
	POLarity?
	 INPut:POLarity?, 243
	 OUTPut:POLarity?, 252
	Power Available for SCPs, 333
	Power-on and *RST defaults, 53
	Pre-setting algorithm variables, 75
	PRESet
	 STAT:PRESet, 302
	Primary-expression:, 133
	Problem, fixing the, 105
	Problems, checking for, 105
	Process monitoring algorithm, 125
	Program flow control, 128
	Program structure and syntax, 138
	Programming model
	 executing the, 53
	Programming the trigger timer, 80
	PTRansition
	 STAT:OPER:PTRansition, 301
	 STAT:QUES:PTRansition, 306
	PTRansition?
	 STAT:OPER:PTRansition?, 302
	 STAT:QUES:PTRansition?, 307
	PULSe
	 SOURce:FUNC[:SHAPe]:PULSe, 292
	Q
	Questionable data group examples, 93
	Quick Reference, Command, 326 - 332
	Quiet measurements, HINTS, 34
	Quieter readings with amplifier SCPs, NOTE, 106
	R
	Rack Mount Terminal Panel Accessories, 45
	Ranges, measurement, 333
	RATio
	 ALGorithm[:EXPLicit]:SCAN:RATio, 197
	RATio?
	 ALGorithm[:EXPLicit]:SCAN:RATio?, 198
	Re-Execute *CAL? when:, 73
	Reading algorithm variables, 83
	Reading condition registers, 96
	Reading CVT elements, 117
	Reading event registers, 96
	Reading status groups directly, 95
	Reading the latest FIFO values (FIFO mode OVER), 86
	86
	Reading the status byte, 94
	Reading values from the FIFO, 117
	Recommended measurement connections, 34
	REFerence
	 SENS:FUNC:CUST:REF, 273
	 SENS:REFerence, 281
	Reference Jumpers
	 configuring the, 32
	Reference junction, 32
	Reference measurement before thermocouple measurements, 65
	measurements, 65
	Reference temperature measurement, NOTE, 26
	Reference temperature sensing, 31
	Reference temperature sensing with the HP E1415, 31
	Reference, Algorithm language, 126
	Register, the status byte group's enable, 95
	Registers, clearing event, 96
	Registers, clearing the enable, 95
	Registers, configuring the enable, 93
	Registers, reading condition, 96
	Registers, reading event, 96
	Rejection
	 Noise, 378
	Rejection, common mode, 334
	Relational-expression:, 134
	Relational-operator:, 135
	Removing the HP E1415 terminal module, 43
	RESet
	 *RST, 320
	 SENS:DATA:CVT:RESet, 265
	 SENS:DATA:FIFO:RESet, 270
	Resetting CAL:TARE, 102
	Residual sensor offsets, 101
	RESistance
	 CAL:CONF:RES, 212
	 CAL:VAL:RESistance, 219
	 SENS:FUNC:RESistance, 275
	Resolution, measurement, 333
	Resources, accessing the E1419A's, 113
	Restrictions, 72
	Retrieving Algorithm Data, 83
	ROUT:SEQ:DEF?, 258
	ROUT:SEQ:POINts?, 259
	ROUTe subsystem, 258 - 259
	RTD and thermistor measurements, 62
	Running the algorithm, 124
	Running, changing an algorithm while it's, 122
	S
	Safe Handling, static discharge CAUTION, 15
	SAMP:TIMer, 260
	SAMP:TIMer?, 260
	SAMPle subsystem, 260 - 261
	sample timer, accuracy, 333
	SCALar
	 ALGorithm[:EXPLicit]:SCALar, 196
	SCALar?
	 ALGorithm[:EXPLicit]:SCALar?, 197
	SCP, 372
	 grouping channels to signal conditioning, 23
	 sense vs. output SCPs, 25
	SCP, Power Available, 333
	SCP, setting the HP E1505 current source, 58
	SCPI commands, 177
	 DIAGnostic:OTDetect, 103
	 Format, 182
	SCPs and Terminal Module, 28
	Selecting the FIFO mode, 77
	Selecting the trigger source, 78
	Selecting trigger timer arm source, 79
	Selection-statement:, 136
	Self test
	 and C-SCPI for MS-DOS (R), 322
	 how to read results, 322
	Self Test, error messages, 366
	Sending Data to the CVT and FIFO, 116
	SENS:DATA:CVT:RESet, 265
	SENS:DATA:FIFO:COUNt:HALF?, 267
	SENS:DATA:FIFO:COUNt?, 266
	SENS:DATA:FIFO:HALF?, 267
	SENS:DATA:FIFO:MODE, 268
	SENS:DATA:FIFO:MODE?, 269
	SENS:DATA:FIFO:PART?, 269
	SENS:DATA:FIFO:RESet, 270
	SENS:FUNC:CUST:REF, 273
	SENS:FUNC:CUST:TC, 274
	SENS:FUNC:RESistance, 275
	SENS:FUNC:STRain, 277
	SENS:FUNC:TEMPerature, 278
	SENS:FUNC:VOLTage, 280
	SENS:REF:TEMPerature, 284
	SENS:REFerence, 281
	SENSe subsystem, 262 - 289
	SENSe:CHANnel:SETTling, 263
	SENSe:CHANnel:SETTling?, 264
	SENSe:DATA:CVTable?, 264
	SENSe:FREQuency:APERture, 270
	SENSe:FREQuency:APERture?, 271
	SENSe:FUNC:CONDition, 271
	SENSe:FUNC:CUSTom, 272
	SENSe:FUNCtion:FREQuency, 275
	SENSe:FUNCtion:TOTalize, 280
	SENSe:REFerence:CHANnels, 283
	SENSe:STRain:EXCitation, 284
	SENSe:STRain:EXCitation?, 285
	SENSe:STRain:GFACtor, 285
	SENSe:STRain:GFACtor?, 286
	SENSe:STRain:POISson, 286
	SENSe:STRain:POISson?, 287
	SENSe:STRain:UNSTrained, 287
	SENSe:STRain:UNSTrained?, 288
	SENSe:TOTalize:RESet:MODE, 288
	SENSe:TOTalize:RESet:MODE?, 289
	Sensing
	 Reference temperature with the HP E1415, 31
	Sensing 4-20 mA, 44
	Separator, command, 182
	Sequence, A complete thermocouple measurement command, 65
	command, 65
	Sequence, ALG:DEFINE in the programming, 121
	Sequence, example command, 88
	Sequence, operating, 118
	Sequence, overall, 118
	Sequence, the operating, 82
	Setting algorithm execution frequency, 88
	Setting filter cutoff frequency, 58
	Setting input function, 68
	Setting input polarity, 67
	Setting output drive type, 69
	Setting output functions, 69
	Setting output polarity, 69
	Setting SCP gains, 57
	Setting the HP E1505 current source SCP, 58
	Setting the HP E1511 strain bridge SCP excitation voltage, 59
	voltage, 59
	Setting the logical address switch, 14
	Setting the trigger counter, 80
	Setting up analog input and output channels, 57
	Setting up digital input and output channels, 67
	Setting up digital inputs, 67
	Setting up digital outputs, 68
	Setting up the trigger system, 78
	Settings conflict
	 ARM:SOUR vs TRIG:SOUR, 208, 313
	SETTling
	 SENSe:CHANnel:SETTling, 263
	Settling characteristics, 104
	SETTling?
	 SENSe:CHANnel:SETTling?, 264
	SETup
	 CAL:SETup, 214
	 CAL:SETup?, 214
	Shield Connections
	 When to make, 377
	SHUNt
	 OUTP:SHUNt, 253
	 OUTPut:SHUNt?, 253
	Signal, connection to channels, 34
	Signals, outputting trigger, 81
	SIZE
	 MEM:VME:SIZE, 246
	Size, determining an algorithm's, 123
	SIZe?
	 ALGorithm[:EXPLicit]:SIZe?, 199
	 MEM:VME:SIZE?, 247
	SOURce
	 ARM:SOURce, 209
	 ARM:SOURce?, 210
	 OUTPut:TTLTrg:SOURce, 254
	 TRIG:SOURce, 313
	SOURce subsystem, 290 - 295
	Source, selecting the trigger, 78
	Source, selecting trigger timer arm, 79
	SOURce:FM:STATe, 290
	SOURce:FM:STATe?, 291
	SOURce:FUNC[:SHAPe]:CONDition, 291
	SOURce:FUNC[:SHAPe]:PULSe, 292
	SOURce:FUNC[:SHAPe]:SQUare, 292
	SOURce:PULM:STATe, 292
	SOURce:PULM:STATe?, 293
	SOURce:PULSe:PERiod, 293
	SOURce:PULSe:PERiod?, 294
	SOURce:PULSe:WIDTh, 294
	SOURce:PULSe:WIDTh?, 294
	SOURce?
	 TRIG:SOURce?, 314
	Sources
	 arm, 78
	 trigger, 78
	Special considerations, 102
	Special HP E1419A reserved keywords, 126
	Special identifiers for channels, 127
	Specifications, 333 - 362
	Specifying the data format, 76
	SQUare
	 SOURce:FUNC[:SHAPe]:SQUare, 292
	Standard Commands for Programmable Instruments, SCPI, 188
	SCPI, 188
	Standard EU operation, 98
	Standard event group examples, 94
	Standard reserved keywords, 126
	Starting algorithms, 81
	STAT:OPER:CONDition?, 298
	STAT:OPER:ENABle, 299
	STAT:OPER:ENABle?, 300
	STAT:OPER:EVENt?, 300
	STAT:OPER:NTRansition, 300
	STAT:OPER:NTRansition?, 301
	STAT:OPER:PTRansition, 301
	STAT:OPER:PTRansition?, 302
	STAT:PRESet, 302
	STAT:QUES:CONDition?, 303
	STAT:QUES:ENABle, 304
	STAT:QUES:ENABle?, 304
	STAT:QUES:EVENt?, 305
	STAT:QUES:NTRansition, 305
	STAT:QUES:NTRansition?, 306
	STAT:QUES:PTRansition, 306
	STAT:QUES:PTRansition?, 307
	STATe
	 ALGorithm[:EXPLicit][:STATe], 199
	 DIAG:OTD[:STATe], 228
	 DIAG:OTD[:STATe]?, 229
	 INP:FILT:LPAS:STATe, 240
	 INP:FILT:LPAS:STATe?, 240
	 MEM:VME:STATe, 247
	 MEM:VME:STATe?, 248
	 OUTPut:CURRent:STATe, 251
	 OUTPut:CURRent:STATe?, 251
	 SOURce:PULM:STATe, 292
	STATe?
	 ALGorithm[:EXPLicit][:STATe]?, 200
	 SOURce:PULM:STATe?, 293
	Statement, algorithm language
	 writecvt(), 116
	 writefifo(), 117
	Statement-list:, 136
	Statement:, 136
	Statements and functions, intrinsic
	 abs(expression), 128
	 interrupt(), 117, 128
	 max(expression1,expression2), 128
	 min(expression1,expression2), 128
	 writeboth(expression,cvt_element), 128
	 writecvt(expression,cvt_element), 116, 128
	 writefifo(expression), 117, 128
	Statements:, 128
	Static discharge safe handling, CAUTION, 15
	Static state (CONDition) function, 68, 70
	STATus subsystem, 296 - 307
	Storage, defining data, 76
	STORe
	 CAL:STORe, 215
	STRain
	 SENS:FUNC:STRain, 277
	Structure, overall program, 142
	Structures, data, 130
	Sub subsystem, 222 - 235, 245 - 248
	Subsystem
	 ABORT, 189
	 ARM, 208 - 210
	 CALibration, 211 - 221
	 DIAGnostic, 222 - 230
	 FETCh?, 231 - 232
	 FORMat, 233 - 235
	 INITiate, 236
	 INPut, 237 - 244
	 MEMory, 245 - 248
	 OUTPut, 249 - 257
	 ROUTe, 258 - 259
	 SAMPle, 260 - 261
	 SENSe, 262 - 289
	 SOURce, 290 - 295
	 STATus, 296 - 307
	 SYSTem, 308 - 309
	 TRIGger, 310 - 315
	Summary, 100
	Summary, language syntax, 133
	Supplying the reference temperature, 65
	Swapping, defining an algorithm for, 122
	Switch, setting the logical address, 14
	Symbols, the operations, 139
	Syntax, Variable Command, 183
	SYST:CTYPe?, 308
	SYST:ERRor?, 308
	SYST:VERSion?, 309
	SYSTem subsystem, 308 - 309
	System wiring offsets, 100
	System, setting up the trigger, 78
	System, using the status, 90
	T
	Tables, creating conversion, 100
	Tables, custom EU, 99
	TARE
	 CAL:TARE:RESet, 218
	 CAL:TARE?, 218
	Tare cal offset, maximum, 334
	TARE?
	 CAL:TARE, 216
	TCouple
	 SENS:FUNC:CUST:TC, 274
	Techniques
	 Wiring and noise reduction, 376
	TEMPerature
	 DIAG:CUST:REF:TEMP, 226
	 SENS:FUNC:TEMPerature, 278
	 SENS:REF:TEMPerature, 284
	Temperature accuracy, 335
	Temperature, measuring the reference, 64
	Temperature, supplying the reference, 65
	Terminal block considerations for TC measurements, 33
	33
	Terminal Blocks, 373
	Terminal Module, 373
	 Attaching and removing the HP E1415, 43
	 Attaching the HP E1415, 43
	 Removing the HP E1415, 43
	 Wiring and attaching the, 41
	Terminal Module Layout, 30
	Terminal module wiring maps, 45
	Terminal modules, 28
	The algorithm execution environment, 112
	The arithmetic operators, 139
	The comparison operators, 139
	The logical operators, 139
	The main function, 112
	The operating sequence, 82
	The operations symbols, 139
	The static modifier, 129
	The status byte group's enable register, 95
	Thermistor and RTD measurements, 62
	Thermocouple measurements, 63
	Thermocouple reference temperature compensation, 64
	Thermocouples and CAL:TARE, 100
	TIME
	 INPut:DEB:TIME, 237
	Time relationship of readings in FIFO, 117
	TIMe?
	 ALGorithm[:EXPLicit]:TIMe?, 201
	Timer
	 SAMP:TIMer, 260
	 SAMP:TIMer?, 260
	 TRIG:COUNt, 312
	 TRIG:TIMer, 314
	Timer, programming the trigger, 80
	TIMer?
	 TRIG:TIMer?, 315
	TOTalize
	 SENSe:FUNCtion:TOTalize, 280
	Totalizer function, 68
	Transducers, detecting open, 103
	TRIG:COUNt, 312
	TRIG:COUNt?, 312
	TRIG:IMMediate, 313
	TRIG:SOURce, 313
	TRIG:SOURce?, 314
	TRIG:TIMer, 314
	TRIG:TIMer?, 315
	TRIGger subsystem, 310 - 315
	trigger system
	 ABORt subsystem, 189
	 ARM subsystem, 208 - 210
	 INITiate subsystem, 236
	 TRIGger subsystem, 310 - 315
	Trigger, variable width pulse per, 70
	TTLTrg:SOURce
	 OUTPut:TTLTrg:SOURce?, 254
	TTLTrg
	 OUTP:TTLT:STATe?, 255
	 OUTP:TTLTrg:STATe, 255
	TYPe
	 OUTPut:TYPE, 255
	Type, setting output drive, 69
	TYPe?
	 OUTPut:TYPE?, 256
	Types, data, 129
	U
	Unary arithmetic operator, 139
	Unary logical operator, 127
	Unary operators, 127
	Unary-expression:, 134
	Unary-operator:, 134
	Unexpected channel offsets or overloads, 102
	UNSTrained
	 SENSe:STRain:UNSTrained, 287
	 SENSe:STRain:UNSTrained?, 288
	Updating the algorithm variables, 86
	Updating the algorithm variables and coefficients, 86
	Updating the status system and VXI interrupts, 97
	Usage, example language, 111
	Using the status system, 90
	V
	Value types
	 parameter data, 187
	 returned, 187
	Values, assigning, 138
	Variable Command Syntax, 183
	Variable definition
	 global, 74
	Variable frequency square-wave output (FM), 71
	Variable width pulse per trigger, 70
	Variable width pulses at fixed frequency (PWM), 70
	Variables
	 reading directly, 84
	Variables, declaring, 138
	Variables, global, 132
	Variables, initializing, 116
	Variables, modifying running algorithm, 86
	Variables, reading algorithm, 83
	Verifying a successful configuration, 21
	VERsion
	 DIAG:VERSion?, 230
	VERsion?
	 SYST:VERSion?, 309
	Voids Warranty
	 Cutting Input Protect Jumper, 19
	VOLTage
	 CAL:CONF:VOLT, 213
	 CAL:VALue:VOLTage, 219
	 SENS:FUNC:VOLTage, 280
	Voltage, setting the HP E1511 strain bridge SCP excitation, 59
	excitation, 59
	VOLTage:AMPLitude
	 OUTPut:VOLTage:AMPLitude, 256
	 OUTPut:VOLTage:AMPLitude?, 257
	W
	Warranty, 9
	 Voided by cutting Input Protect Jumper, 19
	What *CAL? does, 72
	When to make shield connections, 377
	When:, re-execute *CAL?, 73
	Which FIFO mode?, 84
	WIDTh
	 SOURce:PULSe:WIDTh, 294
	WIDTh?
	 SOURce:PULSe:WIDTh?, 294
	WINDow
	 ALGorithm:UPDate:WINDow, 206
	WINDow?
	 ALGorithm:UPDate:WINDow?, 207
	Wiring
	 planning for thermocouple, 26
	 planning layout, 23
	 signal connection, 34
	Wiring and attaching the terminal module, 41
	Wiring maps
	 Terminal Module, 45
	Wiring techniques, for noise reduction, 376
	Wiring the terminal module, 41
	writeboth(expression,cvt_element), 128
	writecvt(expression,cvt_element), 116, 128
	writefifo(expression), 117, 128
	Writing the algorithm, 124
	Writing values to CVT elements, 116
	Writing values to the FIFO, 117
	Z
	ZERO?
	 CAL:ZERO?, 220

